check_sparsity¶
- paddle.fluid.contrib.sparsity.utils. check_sparsity ( tensor, func_name=CheckMethod.CHECK_1D, n=2, m=4 ) [source]
- 
         Check if input tensor is in n:m sparse pattern via function given by func_name. Currently only support tensor with dimension less than or equal to 4.- Parameters
- 
           - tensor (nparray) – The input tensor. 
- func_name (CheckMethod, optional) – The function name to generate spase mask. Default is CheckMethod.CHECK_1D. All options please refer to CheckMethod. 
- n (int, optional) – n of n:m sparse pattern. Default is 2. 
- m (int, optional) – m of n:m sparse pattern. Default is 4. 
 
- Returns
- 
           True if tensor pass checking of function given by func_name, else False.
- Return type
- 
           bool 
 Examples import numpy as np import paddle.fluid.contrib.sparsity as sparsity tensor = np.array([[2, 8, 9, 9], [9, 1, 3, 9], [5, 6, 3, 9], [2, 4, 6, 9]]) mask_1d = sparsity.create_mask(tensor, func_name=sparsity.MaskAlgo.MASK_1D) # nparray([[0 0 1 1], # [1 0 0 1], # [0 1 0 1], # [0 0 1 1]]) sparsity.check_sparsity(mask_1d, func_name=sparsity.CheckMethod.CHECK_1D) # True sparsity.check_sparsity(mask_1d, func_name=sparsity.CheckMethod.CHECK_2D) # False 
