SqueezeNet¶
- class paddle.vision.models. SqueezeNet ( version, num_classes=1000, with_pool=True ) [source]
- 
         SqueezeNet model from “SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size”. - Parameters
- 
           - version (str) – Version of SqueezeNet, which can be “1.0” or “1.1”. 
- num_classes (int, optional) – Output dim of last fc layer. If num_classes <= 0, last fc layer will not be defined. Default: 1000. 
- with_pool (bool, optional) – Use pool before the last fc layer or not. Default: True. 
 
- Returns
- 
           Layer. An instance of SqueezeNet model. 
 Examples import paddle from paddle.vision.models import SqueezeNet # build v1.0 model model = SqueezeNet(version='1.0') # build v1.1 model # model = SqueezeNet(version='1.1') x = paddle.rand([1, 3, 224, 224]) out = model(x) print(out.shape) # [1, 1000] - 
            
           forward
           (
           inputs
           )
           forward¶
- 
           Defines the computation performed at every call. Should be overridden by all subclasses. - Parameters
- 
             - *inputs (tuple) – unpacked tuple arguments 
- **kwargs (dict) – unpacked dict arguments 
 
 
 
