logical_xor¶
- paddle. logical_xor ( x, y, out=None, name=None ) [source]
- 
         logical_xoroperator computes element-wise logical XOR onxandy, and returnsout.outis N-dim booleanTensor. Each element ofoutis calculated by\[out = (x || y) \&\& !(x \&\& y)\]Note paddle.logical_xorsupports broadcasting. If you want know more about broadcasting, please refer to user_guide_broadcasting.- Parameters
- 
           - x (Tensor) – the input tensor, it’s data type should be one of bool, int8, int16, in32, in64, float32, float64. 
- y (Tensor) – the input tensor, it’s data type should be one of bool, int8, int16, in32, in64, float32, float64. 
- out (Tensor) – The - Tensorthat specifies the output of the operator, which can be any- Tensorthat has been created in the program. The default value is None, and a new- Tensorwill be created to save the output.
- name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name. 
 
- Returns
- 
           N-D Tensor. A location into which the result is stored. It’s dimension equals with x.
 Examples import paddle x = paddle.to_tensor([True, False], dtype="bool").reshape([2, 1]) y = paddle.to_tensor([True, False, True, False], dtype="bool").reshape([2, 2]) res = paddle.logical_xor(x, y) print(res) # Tensor(shape=[2, 2], dtype=bool, place=Place(cpu), stop_gradient=True, # [[False, True ], # [True , False]]) 
