accuracy¶
- paddle.static. accuracy ( input, label, k=1, correct=None, total=None ) [source]
- 
         accuracy layer. Refer to the https://en.wikipedia.org/wiki/Precision_and_recall This function computes the accuracy using the input and label. If the correct label occurs in top k predictions, then correct will increment by one. Note the dtype of accuracy is determined by input. the input and label dtype can be different. - Parameters
- 
           - input (Tensor) – The input of accuracy layer, which is the predictions of network. A Tensor with type float32,float64. The shape is - [sample_number, class_dim].
- label (Tensor) – The label of dataset. Tensor with type int32,int64. The shape is - [sample_number, 1].
- k (int, optional) – The top k predictions for each class will be checked. Data type is int64 or int32. Default is 1. 
- correct (Tensor, optional) – The correct predictions count. A Tensor with type int64 or int32. Default is None. 
- total (Tensor, optional) – The total entries count. A tensor with type int64 or int32. Default is None. 
 
- Returns
- 
           Tensor, The correct rate. A Tensor with type float32. 
 Examples import numpy as np import paddle import paddle.static as static import paddle.nn.functional as F paddle.enable_static() data = static.data(name="input", shape=[-1, 32, 32], dtype="float32") label = static.data(name="label", shape=[-1,1], dtype="int") fc_out = static.nn.fc(x=data, size=10) predict = F.softmax(x=fc_out) result = static.accuracy(input=predict, label=label, k=5) place = paddle.CPUPlace() exe = static.Executor(place) exe.run(static.default_startup_program()) x = np.random.rand(3, 32, 32).astype("float32") y = np.array([[1],[0],[1]]) output= exe.run(feed={"input": x,"label": y}, fetch_list=[result[0]]) print(output) #[array([0.], dtype=float32)] 
