to_tensor¶
- paddle. to_tensor ( data, dtype=None, place=None, stop_gradient=True ) [source]
- 
         Constructs a paddle.Tensorfromdata, which can be scalar, tuple, list, numpy.ndarray, paddle.Tensor.If the datais already a Tensor, copy will be performed and return a new tensor. If you only want to change stop_gradient property, please callTensor.stop_gradient = stop_gradientdirectly.- Parameters
- 
           - data (scalar|tuple|list|ndarray|Tensor) – Initial data for the tensor. Can be a scalar, list, tuple, numpy.ndarray, paddle.Tensor. 
- dtype (str|np.dtype, optional) – The desired data type of returned tensor. Can be ‘bool’ , ‘float16’ , ‘float32’ , ‘float64’ , ‘int8’ , ‘int16’ , ‘int32’ , ‘int64’ , ‘uint8’, ‘complex64’ , ‘complex128’. Default: None, infers dtype from - dataexcept for python float number which gets dtype from- get_default_type.
- place (CPUPlace|CUDAPinnedPlace|CUDAPlace|str, optional) – The place to allocate Tensor. Can be CPUPlace, CUDAPinnedPlace, CUDAPlace. Default: None, means global place. If - placeis string, It can be- cpu,- gpu:xand- gpu_pinned, where- xis the index of the GPUs.
- stop_gradient (bool, optional) – Whether to block the gradient propagation of Autograd. Default: True. 
 
- Returns
- 
           A Tensor constructed from data.
- Return type
- 
           Tensor 
 Examples: import paddle type(paddle.to_tensor(1)) # <class 'paddle.Tensor'> paddle.to_tensor(1) # Tensor(shape=[1], dtype=int64, place=CPUPlace, stop_gradient=True, # [1]) x = paddle.to_tensor(1, stop_gradient=False) print(x) # Tensor(shape=[1], dtype=int64, place=CPUPlace, stop_gradient=False, # [1]) paddle.to_tensor(x) # A new tensor will be created with default stop_gradient=True # Tensor(shape=[1], dtype=int64, place=CPUPlace, stop_gradient=True, # [1]) paddle.to_tensor([[0.1, 0.2], [0.3, 0.4]], place=paddle.CPUPlace(), stop_gradient=False) # Tensor(shape=[2, 2], dtype=float32, place=CPUPlace, stop_gradient=False, # [[0.10000000, 0.20000000], # [0.30000001, 0.40000001]]) type(paddle.to_tensor([[1+1j, 2], [3+2j, 4]], dtype='complex64')) # <class 'paddle.Tensor'> paddle.to_tensor([[1+1j, 2], [3+2j, 4]], dtype='complex64') # Tensor(shape=[2, 2], dtype=complex64, place=CPUPlace, stop_gradient=True, # [[(1+1j), (2+0j)], # [(3+2j), (4+0j)]]) 
