DenseNet¶
- class paddle.vision.models. DenseNet ( layers=121, bn_size=4, dropout=0.0, num_classes=1000, with_pool=True ) [source]
- 
         DenseNet model from “Densely Connected Convolutional Networks”. - Parameters
- 
           - layers (int, optional) – Layers of DenseNet. Default: 121. 
- bn_size (int, optional) – Expansion of growth rate in the middle layer. Default: 4. 
- dropout (float, optional) – Dropout rate. Default: \(0.0\). 
- num_classes (int, optional) – Output dim of last fc layer. If num_classes <= 0, last fc layer will not be defined. Default: 1000. 
- with_pool (bool, optional) – Use pool before the last fc layer or not. Default: True. 
 
- Returns
- 
           Layer. An instance of DenseNet model. 
 Examples import paddle from paddle.vision.models import DenseNet # build model densenet = DenseNet() x = paddle.rand([1, 3, 224, 224]) out = densenet(x) print(out.shape) # [1, 1000] - 
            
           forward
           (
           input
           )
           forward¶
- 
           Defines the computation performed at every call. Should be overridden by all subclasses. - Parameters
- 
             - *inputs (tuple) – unpacked tuple arguments 
- **kwargs (dict) – unpacked dict arguments 
 
 
 
