SimpleRNNCell¶
- class paddle.nn. SimpleRNNCell ( input_size, hidden_size, activation='tanh', weight_ih_attr=None, weight_hh_attr=None, bias_ih_attr=None, bias_hh_attr=None, name=None ) [source]
- 
         Elman RNN (SimpleRNN) cell. Given the inputs and previous states, it computes the outputs and updates states. The formula used is as follows: \[ \begin{align}\begin{aligned}h_{t} & = act(W_{ih}x_{t} + b_{ih} + W_{hh}h_{t-1} + b_{hh})\\y_{t} & = h_{t}\end{aligned}\end{align} \]where \(act\) is for activation.Please refer to Finding Structure in Time for more details. - Parameters
- 
           - input_size (int) – The input size. 
- hidden_size (int) – The hidden size. 
- activation (str, optional) – The activation in the SimpleRNN cell. It can be tanh or relu. Defaults to tanh. 
- weight_ih_attr (ParamAttr, optional) – The parameter attribute for \(weight_ih\). Default: None. 
- weight_hh_attr (ParamAttr, optional) – The parameter attribute for \(weight_hh\). Default: None. 
- bias_ih_attr (ParamAttr, optional) – The parameter attribute for the \(bias_ih\). Default: None. 
- bias_hh_attr (ParamAttr, optional) – The parameter attribute for the \(bias_hh\). Default: None. 
- name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name. 
 
 - Variables:
- 
           - weight_ih (Parameter): shape (hidden_size, input_size), input to hidden weight, corresponding to \(W_{ih}\) in the formula. 
- weight_hh (Parameter): shape (hidden_size, hidden_size), hidden to hidden weight, corresponding to \(W_{hh}\) in the formula. 
- bias_ih (Parameter): shape (hidden_size, ), input to hidden bias, corresponding to \(b_{ih}\) in the formula. 
- bias_hh (Parameter): shape (hidden_size, ), hidden to hidden bias, corresponding to \(b_{hh}\) in the formula. 
 
- Inputs:
- 
           - inputs (Tensor): shape [batch_size, input_size], the input, corresponding to \(x_{t}\) in the formula. 
- states (Tensor, optional): shape [batch_size, hidden_size], the previous hidden state, corresponding to \(h_{t-1}\) in the formula. When states is None, zero state is used. Defaults to None. 
 
 - Returns
- 
           shape [batch_size, hidden_size], the output, corresponding to \(h_{t}\) in the formula. - states (Tensor): shape [batch_size, hidden_size], the new hidden state, corresponding to \(h_{t}\) in the formula. 
- Return type
- 
           
           - outputs (Tensor) 
 
 Notes All the weights and bias are initialized with Uniform(-std, std) by default. Where std = \(\frac{1}{\sqrt{hidden\_size}}\). For more information about parameter initialization, please refer to api_fluid_ParamAttr. Examples import paddle x = paddle.randn((4, 16)) prev_h = paddle.randn((4, 32)) cell = paddle.nn.SimpleRNNCell(16, 32) y, h = cell(x, prev_h) print(y.shape) #[4,32] - 
            
           forward
           (
           inputs, 
           states=None
           )
           forward¶
- 
           Defines the computation performed at every call. Should be overridden by all subclasses. - Parameters
- 
             - *inputs (tuple) – unpacked tuple arguments 
- **kwargs (dict) – unpacked dict arguments 
 
 
 - property state_shape
- 
           Abstract method (property). Used to initialize states. A (possiblely nested structure of) shape[s], where a shape is a list/tuple of integers (-1 for batch size would be automatically inserted into a shape if shape is not started with it). Not necessary to be implemented if states are not initialized by get_initial_states or the shape argument is provided when using get_initial_states. 
 - 
            
           extra_repr
           (
           )
           extra_repr¶
- 
           Extra representation of this layer, you can have custom implementation of your own layer. 
 
