rfftfreq¶
- paddle.fft. rfftfreq ( n, d=1.0, dtype=None, name=None ) [source]
- 
         Return the Discrete Fourier Transform sample frequencies. The returned floating-point array “F” contains the center of the frequency unit, and the unit is the number of cycles of the sampling interval (the starting point is zero). Given input length n and a sample spacing d: f = [0, 1, ..., n/2-1, n/2] / (d*n) if n is even f = [0, 1, ..., (n-1)/2-1, (n-1)/2] / (d*n) if n is odd the Nyquist frequency component is considered to be positive. - Parameters
- 
           - n (int) – Dimension inputed. 
- d (scalar, optional) – Sample spacing (inverse of the sampling rate). Defaults is 1. 
- dtype (str, optional) – The data type of returns. Defaults is the data type of returns of - paddle.get_default_dtype().
- name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name. 
 
- Returns
- 
           Tensor. A tensor of length n//2 + 1containing the sample frequencies.
 Examples import numpy as np import paddle x = np.array([3, 1, 2, 2, 3], dtype=float) scalar_temp = 0.3 n = x.size rfftfreq_xp = paddle.fft.rfftfreq(n, d=scalar_temp) print(rfftfreq_xp) # Tensor(shape=[3], dtype=float32, place=CUDAPlace(0), stop_gradient=True, # [0. , 0.66666669, 1.33333337]) 
