CosineDecay¶
- class paddle.fluid.dygraph.learning_rate_scheduler. CosineDecay ( learning_rate, step_each_epoch, epochs, begin=0, step=1, dtype='float32' ) [source]
- 
         - Api_attr
- 
           imperative 
 Applies cosine decay to the learning rate. The algorithm can be described as following. \[\begin{split}decayed\_learning\_rate = learning\_rate * 0.5 * (math.cos(global\_step * \\frac{math.pi}{step\_each\_epoch} ) + 1)\end{split}\]- Parameters
- 
           - learning_rate (Variable|float) – The initial learning rate. If the type is Variable, it’s a tensor with shape [1], the data type can be float32 or float64. It also can be set to python int number. 
- step_each_epoch (int) – The number of steps in an epoch. 
- epochs (int) – The number of epochs. 
- begin (int, optional) – The begin step. The initial value of global_step described above. The default value is 0. 
- step (int, optional) – The step size used to calculate the new global_step in the description above. The default value is 1. 
- dtype (str, optional) – The data type used to create the learning rate variable. The data type can be set as ‘float32’, ‘float64’. The default value is ‘float32’. 
 
- Returns
- 
           None. 
 Examples base_lr = 0.1 with fluid.dygraph.guard(): optimizer = fluid.optimizer.SGD( learning_rate = fluid.dygraph.CosineDecay( base_lr, 10000, 120) ) - 
            
           create_lr_var
           (
           lr
           )
           create_lr_var¶
- 
           convert lr from float to variable - Parameters
- 
             lr – learning rate 
- Returns
- 
             learning rate variable 
 
 - 
            
           set_dict
           (
           state_dict
           )
           set_dict¶
- 
           Loads the schedulers state. 
 - 
            
           set_state_dict
           (
           state_dict
           )
           set_state_dict¶
- 
           Loads the schedulers state. 
 - 
            
           state_dict
           (
           )
           state_dict¶
- 
           Returns the state of the scheduler as a dict.It is a subset of self.__dict__ . 
 
