perspective¶
- paddle.vision.transforms. perspective ( img, startpoints, endpoints, interpolation='nearest', fill=0 ) [source]
- 
         Perform perspective transform of the given image. - Parameters
- 
           - img (PIL.Image|np.array|paddle.Tensor) – Image to be transformed. 
- startpoints (list of list of ints) – List containing four lists of two integers corresponding to four corners - [top-left, top-right, bottom-right, bottom-left]of the original image.
- endpoints (list of list of ints) – List containing four lists of two integers corresponding to four corners - [top-left, top-right, bottom-right, bottom-left]of the transformed image.
- interpolation (str, optional) – Interpolation method. If omitted, or if the image has only one channel, it is set to PIL.Image.NEAREST or cv2.INTER_NEAREST according the backend. When use pil backend, support method are as following: - “nearest”: Image.NEAREST, - “bilinear”: Image.BILINEAR, - “bicubic”: Image.BICUBIC When use cv2 backend, support method are as following: - “nearest”: cv2.INTER_NEAREST, - “bilinear”: cv2.INTER_LINEAR, - “bicubic”: cv2.INTER_CUBIC 
- fill (int|list|tuple, optional) – Pixel fill value for the area outside the transformed image. If given a number, the value is used for all bands respectively. 
 
- Returns
- 
           transformed Image. 
- Return type
- 
           PIL.Image|np.array|paddle.Tensor 
 Examples import paddle from paddle.vision.transforms import functional as F fake_img = paddle.randn((3, 256, 300)).astype(paddle.float32) startpoints = [[0, 0], [33, 0], [33, 25], [0, 25]] endpoints = [[3, 2], [32, 3], [30, 24], [2, 25]] perspectived_img = F.perspective(fake_img, startpoints, endpoints) print(perspectived_img.shape) 
