pad¶
- paddle.vision.transforms. pad ( img, padding, fill=0, padding_mode='constant' ) [source]
- 
         Pads the given PIL.Image or numpy.array on all sides with specified padding mode and fill value. - Parameters
- 
           - img (PIL.Image|np.array) – Image to be padded. 
- padding (int|list|tuple) – Padding on each border. If a single int is provided this is used to pad all borders. If list/tuple of length 2 is provided this is the padding on left/right and top/bottom respectively. If a list/tuple of length 4 is provided this is the padding for the left, top, right and bottom borders respectively. 
- fill (float, optional) – Pixel fill value for constant fill. If a tuple of length 3, it is used to fill R, G, B channels respectively. This value is only used when the padding_mode is constant. Default: 0. 
- padding_mode – - Type of padding. Should be: constant, edge, reflect or symmetric. Default: ‘constant’. - constant: pads with a constant value, this value is specified with fill 
- edge: pads with the last value on the edge of the image 
- reflect: pads with reflection of image (without repeating the last value on the edge) - padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode will result in [3, 2, 1, 2, 3, 4, 3, 2] 
- symmetric: pads with reflection of image (repeating the last value on the edge) - padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode will result in [2, 1, 1, 2, 3, 4, 4, 3] 
 
 
- Returns
- 
           Padded image. 
- Return type
- 
           PIL.Image or np.array 
 Examples import numpy as np from PIL import Image from paddle.vision.transforms import functional as F fake_img = (np.random.rand(256, 300, 3) * 255.).astype('uint8') fake_img = Image.fromarray(fake_img) padded_img = F.pad(fake_img, padding=1) print(padded_img.size) padded_img = F.pad(fake_img, padding=(2, 1)) print(padded_img.size) 
