VGG¶
- class paddle.vision.models. VGG ( features, num_classes=1000, with_pool=True ) [source]
- 
         VGG model from “Very Deep Convolutional Networks For Large-Scale Image Recognition”. - Parameters
- 
           - features (nn.Layer) – Vgg features create by function make_layers. 
- num_classes (int, optional) – Output dim of last fc layer. If num_classes <= 0, last fc layer will not be defined. Default: 1000. 
- with_pool (bool, optional) – Use pool before the last three fc layer or not. Default: True. 
 
- Returns
- 
           Layer. An instance of VGG model. 
 Examples import paddle from paddle.vision.models import VGG from paddle.vision.models.vgg import make_layers vgg11_cfg = [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'] features = make_layers(vgg11_cfg) vgg11 = VGG(features) x = paddle.rand([1, 3, 224, 224]) out = vgg11(x) print(out.shape) # [1, 1000] - 
            
           forward
           (
           x
           )
           forward¶
- 
           Defines the computation performed at every call. Should be overridden by all subclasses. - Parameters
- 
             - *inputs (tuple) – unpacked tuple arguments 
- **kwargs (dict) – unpacked dict arguments 
 
 
 
