InputSpec¶
- class paddle.static. InputSpec ( shape, dtype='float32', name=None ) [source]
- 
         InputSpec describes the signature information of the model input, such as shape,dtype,name.This interface is often used to specify input tensor information of models in high-level API. It’s also used to specify the tensor information for each input parameter of the forward function decorated by @paddle.jit.to_static. - Parameters
- 
           - shape (tuple(integers)|list[integers]) – List|Tuple of integers declaring the shape. You can set “None” or -1 at a dimension to indicate the dimension can be of any size. For example, it is useful to set changeable batch size as “None” or -1. 
- dtype (np.dtype|str, optional) – The type of the data. Supported dtype: bool, float16, float32, float64, int8, int16, int32, int64, uint8. Default: float32. 
- name (str) – The name/alias of the variable, see Name for more details. 
 
 Examples from paddle.static import InputSpec input = InputSpec([None, 784], 'float32', 'x') label = InputSpec([None, 1], 'int64', 'label') print(input) # InputSpec(shape=(-1, 784), dtype=paddle.float32, name=x) print(label) # InputSpec(shape=(-1, 1), dtype=paddle.int64, name=label) - 
            
           classmethod 
           from_tensor
           (
           tensor, 
           name=None
           )
           from_tensor¶
- 
           Generates a InputSpec based on the description of input tensor. - Parameters
- 
             tensor (Tensor) – the source tensor to generate a InputSpec instance 
- Returns
- 
             A InputSpec instance generated from Tensor. 
 Examples import paddle from paddle.static import InputSpec paddle.disable_static() x = paddle.ones([2, 2], dtype="float32") x_spec = InputSpec.from_tensor(x, name='x') print(x_spec) # InputSpec(shape=(2, 2), dtype=paddle.float32, name=x) 
 - 
            
           classmethod 
           from_numpy
           (
           ndarray, 
           name=None
           )
           from_numpy¶
- 
           Generates a InputSpec based on the description of input np.ndarray. - Parameters
- 
             tensor (Tensor) – the source numpy ndarray to generate a InputSpec instance 
- Returns
- 
             A InputSpec instance generated from Tensor. 
 Examples import numpy as np from paddle.static import InputSpec x = np.ones([2, 2], np.float32) x_spec = InputSpec.from_numpy(x, name='x') print(x_spec) # InputSpec(shape=(2, 2), dtype=paddle.float32, name=x) 
 - 
            
           batch
           (
           batch_size
           )
           [source]
           batch¶
- 
           Inserts batch_size in front of the shape. - Parameters
- 
             batch_size (int) – the inserted integer value of batch size. 
- Returns
- 
             The original InputSpec instance by inserting batch_size in front of shape. 
 Examples from paddle.static import InputSpec x_spec = InputSpec(shape=[64], dtype='float32', name='x') x_spec.batch(4) print(x_spec) # InputSpec(shape=(4, 64), dtype=paddle.float32, name=x) 
 - 
            
           unbatch
           (
           )
           unbatch¶
- 
           Removes the first element of shape. - Returns
- 
             The original InputSpec instance by removing the first element of shape . 
 Examples from paddle.static import InputSpec x_spec = InputSpec(shape=[4, 64], dtype='float32', name='x') x_spec.unbatch() print(x_spec) # InputSpec(shape=(64,), dtype=paddle.float32, name=x) 
 
