ThresholdedReLU¶
- class paddle.nn. ThresholdedReLU ( threshold=1.0, name=None ) [source]
- 
         Thresholded ReLU Activation \[\begin{split}ThresholdedReLU(x) = \left\{ \begin{array}{rl} x,& \text{if } \ x > threshold \\ 0,& \text{otherwise} \end{array} \right.\end{split}\]- Parameters
- 
           - threshold (float, optional) – The value of threshold for ThresholdedReLU. Default is 1.0 
- name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name. 
 
 - Shape:
- 
           - input: Tensor with any shape. 
- output: Tensor with the same shape as input. 
 
 Examples import paddle x = paddle.to_tensor([2., 0., 1.]) m = paddle.nn.ThresholdedReLU() out = m(x) print(out) # Tensor(shape=[3], dtype=float32, place=Place(gpu:0), stop_gradient=True, # [2., 0., 0.]) - 
            
           forward
           (
           x
           )
           forward¶
- 
           Defines the computation performed at every call. Should be overridden by all subclasses. - Parameters
- 
             - *inputs (tuple) – unpacked tuple arguments 
- **kwargs (dict) – unpacked dict arguments 
 
 
 - 
            
           extra_repr
           (
           )
           extra_repr¶
- 
           Extra representation of this layer, you can have custom implementation of your own layer. 
 
