ResNet¶
- class paddle.vision.models. ResNet ( block, depth=50, width=64, num_classes=1000, with_pool=True, groups=1 ) [source]
- 
         ResNet model from “Deep Residual Learning for Image Recognition”. - Parameters
- 
           - Block (BasicBlock|BottleneckBlock) – Block module of model. 
- depth (int, optional) – Layers of ResNet, Default: 50. 
- width (int, optional) – Base width per convolution group for each convolution block, Default: 64. 
- num_classes (int, optional) – Output dim of last fc layer. If num_classes <= 0, last fc layer will not be defined. Default: 1000. 
- with_pool (bool, optional) – Use pool before the last fc layer or not. Default: True. 
- groups (int, optional) – Number of groups for each convolution block, Default: 1. 
 
- Returns
- 
           Layer. An instance of ResNet model. 
 Examples import paddle from paddle.vision.models import ResNet from paddle.vision.models.resnet import BottleneckBlock, BasicBlock # build ResNet with 18 layers resnet18 = ResNet(BasicBlock, 18) # build ResNet with 50 layers resnet50 = ResNet(BottleneckBlock, 50) # build Wide ResNet model wide_resnet50_2 = ResNet(BottleneckBlock, 50, width=64*2) # build ResNeXt model resnext50_32x4d = ResNet(BottleneckBlock, 50, width=4, groups=32) x = paddle.rand([1, 3, 224, 224]) out = resnet18(x) print(out.shape) # [1, 1000] - 
            
           forward
           (
           x
           )
           forward¶
- 
           Defines the computation performed at every call. Should be overridden by all subclasses. - Parameters
- 
             - *inputs (tuple) – unpacked tuple arguments 
- **kwargs (dict) – unpacked dict arguments 
 
 
 
