AbsTransform¶
- class paddle.distribution. AbsTransform [source]
- 
         Absolute transformation with formula \(y = f(x) = abs(x)\), element-wise. This non-injective transformation allows for transformations of scalar distributions with the absolute value function, which maps (-inf, inf)to[0, inf).- For - yin- (0, inf),- AbsTransform.inverse(y)returns the set invese- {x in (-inf, inf) : |x| = y}as a tuple,- -y, y.
- For - yequal- 0,- AbsTransform.inverse(0)returns- 0, 0, which is not the set inverse (the set inverse is the singleton {0}), but “works” in conjunction with- TransformedDistributionto produce a left semi-continuous pdf.
- For - yin- (-inf, 0),- AbsTransform.inverse(y)returns the wrong thing- -y, y. This is done for efficiency.
 Examples import paddle abs = paddle.distribution.AbsTransform() print(abs.forward(paddle.to_tensor([-1., 0., 1.]))) # Tensor(shape=[3], dtype=float32, place=Place(gpu:0), stop_gradient=True, # [1., 0., 1.]) print(abs.inverse(paddle.to_tensor(1.))) # (Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True, # [-1.]), Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True, # [1.])) # The |dX/dY| is constant 1. So Log|dX/dY| == 0 print(abs.inverse_log_det_jacobian(paddle.to_tensor(1.))) # (Tensor(shape=[], dtype=float32, place=Place(gpu:0), stop_gradient=True, # 0.), Tensor(shape=[], dtype=float32, place=Place(gpu:0), stop_gradient=True, # 0.)) #Special case handling of 0. print(abs.inverse(paddle.to_tensor(0.))) # (Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True, # [0.]), Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True, # [0.])) print(abs.inverse_log_det_jacobian(paddle.to_tensor(0.))) # (Tensor(shape=[], dtype=float32, place=Place(gpu:0), stop_gradient=True, # 0.), Tensor(shape=[], dtype=float32, place=Place(gpu:0), stop_gradient=True, # 0.)) - 
            
           forward
           (
           x
           )
           forward¶
- 
           Forward transformation with mapping \(y = f(x)\). Useful for turning one random outcome into another. - Parameters
- 
             x (Tensos) – Input parameter, generally is a sample generated from Distribution.
- Returns
- 
             Outcome of forward transformation. 
- Return type
- 
             Tensor 
 
 - 
            
           forward_log_det_jacobian
           (
           x
           )
           forward_log_det_jacobian¶
- 
           The log of the absolute value of the determinant of the matrix of all first-order partial derivatives of the inverse function. - Parameters
- 
             x (Tensor) – Input tensor, generally is a sample generated from Distribution
- Returns
- 
             The log of the absolute value of Jacobian determinant. 
- Return type
- 
             Tensor 
 
 - 
            
           forward_shape
           (
           shape
           )
           forward_shape¶
- 
           Infer the shape of forward transformation. - Parameters
- 
             shape (Sequence[int]) – The input shape. 
- Returns
- 
             The output shape. 
- Return type
- 
             Sequence[int] 
 
 - 
            
           inverse
           (
           y
           )
           inverse¶
- 
           Inverse transformation \(x = f^{-1}(y)\). It’s useful for “reversing” a transformation to compute one probability in terms of another. - Parameters
- 
             y (Tensor) – Input parameter for inverse transformation. 
- Returns
- 
             Outcome of inverse transform. 
- Return type
- 
             Tensor 
 
 - 
            
           inverse_log_det_jacobian
           (
           y
           )
           inverse_log_det_jacobian¶
- 
           Compute \(log|det J_{f^{-1}}(y)|\). Note that forward_log_det_jacobianis the negative of this function, evaluated at \(f^{-1}(y)\).- Parameters
- 
             y (Tensor) – The input to the inverseJacobian determinant evaluation.
- Returns
- 
             The value of \(log|det J_{f^{-1}}(y)|\). 
- Return type
- 
             Tensor 
 
 - 
            
           inverse_shape
           (
           shape
           )
           inverse_shape¶
- 
           Infer the shape of inverse transformation. - Parameters
- 
             shape (Sequence[int]) – The input shape of inverse transformation. 
- Returns
- 
             The output shape of inverse transformation. 
- Return type
- 
             Sequence[int] 
 
 
