unique¶
- paddle. unique ( x, return_index=False, return_inverse=False, return_counts=False, axis=None, dtype='int64', name=None ) [source]
- 
         Returns the unique elements of x in ascending order. - Parameters
- 
           - x (Tensor) – The input tensor, it’s data type should be float32, float64, int32, int64. 
- return_index (bool, optional) – If True, also return the indices of the input tensor that result in the unique Tensor. 
- return_inverse (bool, optional) – If True, also return the indices for where elements in the original input ended up in the returned unique tensor. 
- return_counts (bool, optional) – If True, also return the counts for each unique element. 
- axis (int, optional) – The axis to apply unique. If None, the input will be flattened. Default: None. 
- dtype (np.dtype|str, optional) – The date type of indices or inverse tensor: int32 or int64. Default: int64. 
- name (str, optional) – Name for the operation. For more information, please refer to Name. Default: None. 
 
- Returns
- 
           
           - tuple (out, indices, inverse, counts). out is the unique tensor for x. indices is
- 
             provided only if return_index is True. inverse is provided only if return_inverse is True. counts is provided only if return_counts is True. 
 
 Examples import paddle x = paddle.to_tensor([2, 3, 3, 1, 5, 3]) unique = paddle.unique(x) np_unique = unique.numpy() # [1 2 3 5] _, indices, inverse, counts = paddle.unique(x, return_index=True, return_inverse=True, return_counts=True) print(indices) # Tensor(shape=[4], dtype=int64, place=Place(gpu:0), stop_gradient=True, # [3, 0, 1, 4]) print(inverse) # Tensor(shape=[6], dtype=int64, place=Place(gpu:0), stop_gradient=True, # [1, 2, 2, 0, 3, 2]) print(counts) # Tensor(shape=[4], dtype=int64, place=Place(gpu:0), stop_gradient=True, # [1, 1, 3, 1]) x = paddle.to_tensor([[2, 1, 3], [3, 0, 1], [2, 1, 3]]) unique = paddle.unique(x) print(unique) # Tensor(shape=[4], dtype=int64, place=Place(gpu:0), stop_gradient=True, # [0, 1, 2, 3]) unique = paddle.unique(x, axis=0) print(unique) # Tensor(shape=[2, 3], dtype=int64, place=Place(gpu:0), stop_gradient=True, # [[2, 1, 3], # [3, 0, 1]]) 
