empty¶
- paddle. empty ( shape, dtype=None, name=None ) [source]
- 
         Returns a Tensor with uninitialized data which size is same as shape.- Parameters
- 
           - shape (list|tuple|Tensor) – Shape of the Tensor to be created. The data type of dimension of shape is - int32or- int64. If- shapeis a list or tuple, the elements of it should be integers or Tensors with shape [1]. If- shapeis an Tensor, it should be an 1-D Tensor.
- dtype (np.dtype|str, optional) – Data type of the output Tensor which can be bool, float16, float32, float64, int32, int64, if dytpe is None, the data type of created Tensor use global default dtype (see - get_default_dtypefor details).
- name (str, optional) – For details, please refer to Name. Generally, no setting is required. Default: None. 
 
- Returns
- 
           Tensor which is created according to shapeanddtype, and is uninitialized.
- Return type
- 
           Tensor 
 Examples import paddle paddle.set_device("cpu") # and use cpu device # example 1: argument ``shape`` is a list which doesn't contain Tensor. data1 = paddle.empty(shape=[2, 3], dtype='float32') print(data1) # Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True, # [[0.00000000, 0. , 0.00000000], # [0. , 0.29652897, 0.09356152]]) # uninitialized # example 2: argument ``shape`` is a Tensor, the data type must be int64 or int32. shape_data = paddle.to_tensor([2, 3]).astype('int32') data2 = paddle.empty(shape=shape_data, dtype='float32') print(data2) # Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True, # [[-0.50543123, -0.09872390, -0.92634487], # [-0.51007903, -0.02454148, 1.29315734]]) # uninitialized # example 3: argument ``shape`` is a list which contains Tensor. dim2 = paddle.to_tensor([3]).astype('int32') data3 = paddle.empty(shape=[2, dim2], dtype='float32') print(data3) # Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True, # [[ 0.00000000, 0. , -0.92634487], # [-0.51007903, -0.02454148, 1.29315734]]) # uninitialized 
