QuantizedConv2DTranspose¶
- class paddle.nn.quant.quant_layers. QuantizedConv2DTranspose ( layer, weight_bits=8, activation_bits=8, moving_rate=0.9, weight_quantize_type='abs_max', activation_quantize_type='abs_max', weight_pre_layer=None, act_pre_layer=None, weight_quant_layer=None, act_quant_layer=None ) [source]
- 
         The computational logic of QuantizedConv2DTranspose is the same with Conv2DTranspose. The only difference is that its inputs are all fake quantized. Examples import paddle import paddle.nn as nn from paddle.nn.quant.quant_layers import QuantizedConv2DTranspose x_var = paddle.uniform((2, 4, 8, 8), dtype='float32', min=-1., max=1.) conv = nn.Conv2DTranspose(4, 6, (3, 3)) conv_quantized = QuantizedConv2DTranspose(conv) y_quantized = conv_quantized(x_var) y_var = conv(x_var) y_quantized_np = y_quantized.numpy() y_np = y_var.numpy() print(y_np.shape, y_quantized_np.shape) # (2, 6, 10, 10), (2, 6, 10, 10) - 
            
           forward
           (
           input, 
           output_size=None
           )
           forward¶
- 
           Defines the computation performed at every call. Should be overridden by all subclasses. - Parameters
- 
             - *inputs (tuple) – unpacked tuple arguments 
- **kwargs (dict) – unpacked dict arguments 
 
 
 
- 
            
           forward
           (
           input, 
           output_size=None
           )
           
