nanmean¶
- paddle. nanmean ( x, axis=None, keepdim=False, name=None ) [source]
- 
         Compute the arithmetic mean along the specified axis, ignoring NaNs. - Parameters
- 
           - x (Tensor) – The input Tensor with data type uint16, float16, float32, float64. 
- axis (int|list|tuple, optional) – The axis along which to perform nanmean calculations. - axisshould be int, list(int) or tuple(int). If- axisis a list/tuple of dimension(s), nanmean is calculated along all element(s) of- axis.- axisor element(s) of- axisshould be in range [-D, D), where D is the dimensions of- x. If- axisor element(s) of- axisis less than 0, it works the same way as \(axis + D\) . If- axisis None, nanmean is calculated over all elements of- x. Default is None.
- keepdim (bool, optional) – Whether to reserve the reduced dimension(s) in the output Tensor. If - keepdimis True, the dimensions of the output Tensor is the same as- xexcept in the reduced dimensions(it is of size 1 in this case). Otherwise, the shape of the output Tensor is squeezed in- axis. Default is False.
- name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name. 
 
- Returns
- 
           Tensor, results of arithmetic mean along axisofx, with the same data type asx.
 Examples import paddle # x is a 2-D Tensor: x = paddle.to_tensor([[float('nan'), 0.3, 0.5, 0.9], [0.1, 0.2, float('-nan'), 0.7]]) out1 = paddle.nanmean(x) # [0.44999996] out2 = paddle.nanmean(x, axis=0) # [0.1, 0.25, 0.5, 0.79999995] out3 = paddle.nanmean(x, axis=0, keepdim=True) # [[0.1, 0.25, 0.5, 0.79999995]] out4 = paddle.nanmean(x, axis=1) # [0.56666666 0.33333334] out5 = paddle.nanmean(x, axis=1, keepdim=True) # [[0.56666666] # [0.33333334]] # y is a 3-D Tensor: y = paddle.to_tensor([[[1, float('nan')], [3, 4]], [[5, 6], [float('-nan'), 8]]]) out6 = paddle.nanmean(y, axis=[1, 2]) # [2.66666675, 6.33333349] out7 = paddle.nanmean(y, axis=[0, 1]) # [3., 6.] 
