logspace¶
- paddle. logspace ( start, stop, num, base=10.0, dtype=None, name=None ) [source]
- 
         Return fixed number of logarithmical-evenly spaced values within the interval \([base^{start}, base^{stop}]\). Notes This API does not compute the gradient. - Parameters
- 
           - start (int|float|Tensor) – The input - startis exponent of first entry in the sequence. It is a scalar, or a Tensor of shape [1] with input data type int32, int64, float32 or float64.
- stop (int|float|Tensor) – The input - stopis exponent of last entry in the sequence. It is a scalar, or a Tensor of shape [1] with input data type int32, int64, float32 or float64.
- num (int|Tensor) – The input - numis given number of items in the sequence. It is an int scalar, or a Tensor of shape [1] with data type int32.
- base (int|float|Tensor) – The input - baseis base of the logarithm function. It is a scalar, or a Tensor of shape [1] with input data type int32, int64, float32 or float64.
- dtype (np.dtype|str, optional) – The data type of output tensor, it could be int32, int64, float32 or float64. Default: if None, the data type is float32. 
- name (str, optional) – For details, please refer to Name. Generally, no setting is required. Default: None. 
 
- Returns
- 
           The output data type will be float32, float64. The 1-D tensor with fixed number of logarithmical-evenly spaced values, the data shape of this tensor is \([num]\). If the numis set 1, the output tensor just has the value with exponential ofstartwith basebase.
- Return type
- 
           Tensor 
 Examples import paddle data = paddle.logspace(0, 10, 5, 2, 'float32') # [1. , 5.65685415 , 32. , 181.01933289, 1024. ] data = paddle.logspace(0, 10, 1, 2, 'float32') # [1.] 
