FusedBiasDropoutResidualLayerNorm¶
- class paddle.incubate.nn. FusedBiasDropoutResidualLayerNorm ( embed_dim, dropout_rate=0.5, weight_attr=None, bias_attr=None, epsilon=1e-05, name=None ) [source]
- 
         Applies fused_bias_dropout_residual_layer_norm operation. - Parameters
- 
           - embed_dim (int) – The expected feature size in the input and output. 
- dropout_rate (float, optional) – The dropout probability used on attention weights to drop some attention targets for the dropout after attention. 0 for no dropout. Default 0.5. 
- bias_attr (ParamAttr|bool, optional) – To specify the bias parameter property. Default: None, which means the default bias parameter property is used. If it is set to False, this layer will not have trainable bias parameter. See usage for details in - ParamAttr.
- epsilon (float, optional) – The small value added to the variance to prevent division by zero. Default: 1e-05. 
 
 Examples # required: gpu import paddle # input: [batch_size, seq_len, embed_dim] x = paddle.rand((2, 4, 128)) # residual: [batch_size, seq_len, embed_dim] residual = paddle.rand((2, 4, 128)) fused_bias_dropout_residual_ln = paddle.incubate.nn.FusedBiasDropoutResidualLayerNorm(128) output = fused_bias_dropout_residual_ln(x, residual) # [2, 4, 128] - 
            
           forward
           (
           x, 
           residual
           )
           forward¶
- 
           Applies fused_bias_dropout_residual_layer_norm operation. - Parameters
- 
             - x (Tensor) – The input tensor. It is a tensor with shape [batch_size, seq_len, embed_dim]. The data type should be float32 or float64. 
- residual (Tensor, optional) – The residual tensor. It is a tensor with shape [batch_size, value_length, vdim]. The data type should be float32 or float64. 
 
- Returns
- 
             It is a tensor that has the same shape and data type as x. 
- Return type
- 
             Tensor|tuple 
 
 - 
            
           extra_repr
           (
           )
           extra_repr¶
- 
           Extra representation of this layer, you can have custom implementation of your own layer. 
 
