CosineSimilarity¶
- class paddle.nn. CosineSimilarity ( axis=1, eps=1e-08 ) [source]
- 
         This interface is used to compute cosine similarity between x1 and x2 along axis. - Parameters
- 
           - axis (int) – Dimension of vectors to compute cosine similarity. Default is 1. 
- eps (float) – Small value to avoid division by zero. Default is 1e-8. 
 
- Returns
- 
           None 
 Examples Case 0: x1 = [[0.8024077 0.9927354 0.27238318 0.8344984 ] [0.48949873 0.5797396 0.65444374 0.66510963] [0.1031398 0.9614342 0.08365563 0.6796464 ] [0.10760343 0.7461209 0.7726148 0.5801006 ]] x2 = [[0.62913156 0.1536727 0.9847992 0.04591406] [0.9098952 0.15715368 0.8671125 0.3156102 ] [0.4427798 0.54136837 0.5276275 0.32394758] [0.3769419 0.8535014 0.48041078 0.9256797 ]] axis = 1 eps = 1e-8 Out: [0.5275037 0.8368967 0.75037485 0.9245899]- Code Examples:
- 
           import paddle import paddle.nn as nn x1 = paddle.to_tensor([[1., 2., 3.], [2., 3., 4.]], dtype="float32") x2 = paddle.to_tensor([[8., 3., 3.], [2., 3., 4.]], dtype="float32") cos_sim_func = nn.CosineSimilarity(axis=0) result = cos_sim_func(x1, x2) print(result) # Tensor(shape=[3], dtype=float32, place=Place(gpu:0), stop_gradient=True, # [0.65079135, 0.98058069, 1. ]) 
 - 
            
           forward
           (
           x1, 
           x2
           )
           forward¶
- 
           Defines the computation performed at every call. Should be overridden by all subclasses. - Parameters
- 
             - *inputs (tuple) – unpacked tuple arguments 
- **kwargs (dict) – unpacked dict arguments 
 
 
 - 
            
           extra_repr
           (
           )
           extra_repr¶
- 
           Extra representation of this layer, you can have custom implementation of your own layer. 
 
