eigh¶
- paddle.linalg. eigh ( x, UPLO='L', name=None ) [source]
- 
         Compute the eigenvalues and eigenvectors of a complex Hermitian (conjugate symmetric) or a real symmetric matrix. - Parameters
- 
           - x (Tensor) – A tensor with shape \([*, N, N]\) , The data type of the input Tensor x should be one of float32, float64, complex64, complex128. 
- UPLO (str, optional) – (string, default ‘L’), ‘L’ represents the lower triangular matrix, “‘U’ represents the upper triangular matrix.”. 
- name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name. 
 
- Returns
- 
           
           - A Tensor with shape [ *, N] and data type of float32 and float64.
- 
              
             The eigenvalues of eigh op. 
 - 
             - out_vector(Tensor): A Tensor with shape [ *, N, N] and data type of float32,float64,
- 
                
               complex64 and complex128. The eigenvectors of eigh op. 
 
 
- Return type
- 
           
           - out_value(Tensor) 
 
 Examples import paddle x = paddle.to_tensor([[1, -2j], [2j, 5]]) out_value, out_vector = paddle.linalg.eigh(x, UPLO='L') print(out_value) #[0.17157288, 5.82842712] print(out_vector) #[(-0.9238795325112867+0j), (-0.3826834323650898+0j)], #[ 0.3826834323650898j , -0.9238795325112867j ]] 
