mse_loss¶
- paddle.nn.functional. mse_loss ( input, label, reduction='mean', name=None ) [source]
- 
         Accept input predications and label and returns the mean square error. If reductionis set to'none', loss is calculated as:\[Out = (input - label)^2\]If reductionis set to'mean', loss is calculated as:\[Out = \operatorname{mean}((input - label)^2)\]If reductionis set to'sum', loss is calculated as:\[Out = \operatorname{sum}((input - label)^2)\]- Parameters
- 
           - input (Tensor) – Input tensor, the data type should be float32 or float64. 
- label (Tensor) – Label tensor, the data type should be float32 or float64. 
- reduction (string, optional) – The reduction method for the output, could be ‘none’ | ‘mean’ | ‘sum’. If - reductionis- 'mean', the reduced mean loss is returned. If- reductionis- 'sum', the reduced sum loss is returned. If- reductionis- 'none', the unreduced loss is returned. Default is- 'mean'.
- name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name. 
 
- Returns
- 
           Tensor, The tensor tensor storing the mean square error difference of input and label. 
 Examples import paddle mse_loss = paddle.nn.loss.MSELoss() input = paddle.to_tensor(1.5) label = paddle.to_tensor(1.7) output = mse_loss(input, label) print(output) # [0.04000002] 
