ExpTransform¶
- class paddle.distribution. ExpTransform [source]
- 
         Exponent transformation with mapping \(y = \exp(x)\). Examples import paddle exp = paddle.distribution.ExpTransform() print(exp.forward(paddle.to_tensor([1., 2., 3.]))) # Tensor(shape=[3], dtype=float32, place=Place(gpu:0), stop_gradient=True, # [2.71828175 , 7.38905621 , 20.08553696]) print(exp.inverse(paddle.to_tensor([1., 2., 3.]))) # Tensor(shape=[3], dtype=float32, place=Place(gpu:0), stop_gradient=True, # [0. , 0.69314718, 1.09861231]) print(exp.forward_log_det_jacobian(paddle.to_tensor([1., 2., 3.]))) # Tensor(shape=[3], dtype=float32, place=Place(gpu:0), stop_gradient=True, # [1., 2., 3.]) print(exp.inverse_log_det_jacobian(paddle.to_tensor([1., 2., 3.]))) # Tensor(shape=[3], dtype=float32, place=Place(gpu:0), stop_gradient=True, # [ 0. , -0.69314718, -1.09861231]) - 
            
           forward
           (
           x
           )
           forward¶
- 
           Forward transformation with mapping \(y = f(x)\). Useful for turning one random outcome into another. - Parameters
- 
             x (Tensos) – Input parameter, generally is a sample generated from Distribution.
- Returns
- 
             Outcome of forward transformation. 
- Return type
- 
             Tensor 
 
 - 
            
           forward_log_det_jacobian
           (
           x
           )
           forward_log_det_jacobian¶
- 
           The log of the absolute value of the determinant of the matrix of all first-order partial derivatives of the inverse function. - Parameters
- 
             x (Tensor) – Input tensor, generally is a sample generated from Distribution
- Returns
- 
             The log of the absolute value of Jacobian determinant. 
- Return type
- 
             Tensor 
 
 - 
            
           forward_shape
           (
           shape
           )
           forward_shape¶
- 
           Infer the shape of forward transformation. - Parameters
- 
             shape (Sequence[int]) – The input shape. 
- Returns
- 
             The output shape. 
- Return type
- 
             Sequence[int] 
 
 - 
            
           inverse
           (
           y
           )
           inverse¶
- 
           Inverse transformation \(x = f^{-1}(y)\). It’s useful for “reversing” a transformation to compute one probability in terms of another. - Parameters
- 
             y (Tensor) – Input parameter for inverse transformation. 
- Returns
- 
             Outcome of inverse transform. 
- Return type
- 
             Tensor 
 
 - 
            
           inverse_log_det_jacobian
           (
           y
           )
           inverse_log_det_jacobian¶
- 
           Compute \(log|det J_{f^{-1}}(y)|\). Note that forward_log_det_jacobianis the negative of this function, evaluated at \(f^{-1}(y)\).- Parameters
- 
             y (Tensor) – The input to the inverseJacobian determinant evaluation.
- Returns
- 
             The value of \(log|det J_{f^{-1}}(y)|\). 
- Return type
- 
             Tensor 
 
 - 
            
           inverse_shape
           (
           shape
           )
           inverse_shape¶
- 
           Infer the shape of inverse transformation. - Parameters
- 
             shape (Sequence[int]) – The input shape of inverse transformation. 
- Returns
- 
             The output shape of inverse transformation. 
- Return type
- 
             Sequence[int] 
 
 
- 
            
           forward
           (
           x
           )
           
