Normal¶
- class paddle.fluid.layers.distributions. Normal ( loc, scale ) [source]
- 
         The Normal distribution with location loc and scale parameters. Mathematical details The probability density function (pdf) is, \[\begin{split}pdf(x; \mu, \sigma) = \\frac{1}{Z}e^{\\frac {-0.5 (x - \mu)^2} {\sigma^2} }\end{split}\]\[Z = (2 \pi \sigma^2)^{0.5}\]In the above equation: - \(loc = \mu\): is the mean. 
- \(scale = \sigma\): is the std. 
- \(Z\): is the normalization constant. 
 - Parameters
- 
           - loc (float|list|numpy.ndarray|Variable) – The mean of normal distribution.The data type is float32. 
- scale (float|list|numpy.ndarray|Variable) – The std of normal distribution.The data type is float32. 
 
 Examples import numpy as np from paddle.fluid import layers from paddle.fluid.layers import Normal # Define a single scalar Normal distribution. dist = Normal(loc=0., scale=3.) # Define a batch of two scalar valued Normals. # The first has mean 1 and standard deviation 11, the second 2 and 22. dist = Normal(loc=[1., 2.], scale=[11., 22.]) # Get 3 samples, returning a 3 x 2 tensor. dist.sample([3]) # Define a batch of two scalar valued Normals. # Both have mean 1, but different standard deviations. dist = Normal(loc=1., scale=[11., 22.]) # Complete example value_npdata = np.array([0.8], dtype="float32") value_tensor = layers.create_tensor(dtype="float32") layers.assign(value_npdata, value_tensor) normal_a = Normal([0.], [1.]) normal_b = Normal([0.5], [2.]) sample = normal_a.sample([2]) # a random tensor created by normal distribution with shape: [2, 1] entropy = normal_a.entropy() # [1.4189385] with shape: [1] lp = normal_a.log_prob(value_tensor) # [-1.2389386] with shape: [1] kl = normal_a.kl_divergence(normal_b) # [0.34939718] with shape: [1] - 
            
           sample
           (
           shape, 
           seed=0
           )
           sample¶
- 
           Generate samples of the specified shape. - Parameters
- 
             - shape (list) – 1D int32. Shape of the generated samples. 
- seed (int) – Python integer number. 
 
- Returns
- 
             A tensor with prepended dimensions shape.The data type is float32. 
- Return type
- 
             Variable 
 
 - 
            
           entropy
           (
           )
           entropy¶
- 
           Shannon entropy in nats. - Returns
- 
             Shannon entropy of normal distribution.The data type is float32. 
- Return type
- 
             Variable 
 
 - 
            
           log_prob
           (
           value
           )
           log_prob¶
- 
           Log probability density/mass function. - Parameters
- 
             value (Variable) – The input tensor. 
- Returns
- 
             log probability.The data type is same with value. 
- Return type
- 
             Variable 
 
 - 
            
           kl_divergence
           (
           other
           )
           kl_divergence¶
- 
           The KL-divergence between two normal distributions. - Parameters
- 
             other (Normal) – instance of Normal. 
- Returns
- 
             kl-divergence between two normal distributions.The data type is float32. 
- Return type
- 
             Variable 
 
 
