ParameterList¶
- class paddle.nn. ParameterList ( parameters=None ) [source]
- 
         ParameterList Container. This container acts like a Python list, but parameters it contains will be properly added. - Parameters
- 
           parameters (iterable, optional) – Iterable Parameters to be added 
 Examples import paddle import numpy as np class MyLayer(paddle.nn.Layer): def __init__(self, num_stacked_param): super(MyLayer, self).__init__() # create ParameterList with iterable Parameters self.params = paddle.nn.ParameterList( [paddle.create_parameter( shape=[2, 2], dtype='float32')] * num_stacked_param) def forward(self, x): for i, p in enumerate(self.params): tmp = self._helper.create_variable_for_type_inference('float32') self._helper.append_op( type="mul", inputs={"X": x, "Y": p}, outputs={"Out": tmp}, attrs={"x_num_col_dims": 1, "y_num_col_dims": 1}) x = tmp return x data_np = np.random.uniform(-1, 1, [5, 2]).astype('float32') x = paddle.to_tensor(data_np) num_stacked_param = 4 model = MyLayer(num_stacked_param) print(len(model.params)) # 4 res = model(x) print(res.shape) # [5, 2] replaced_param = paddle.create_parameter(shape=[2, 3], dtype='float32') model.params[num_stacked_param - 1] = replaced_param # replace last param res = model(x) print(res.shape) # [5, 3] model.params.append(paddle.create_parameter(shape=[3, 4], dtype='float32')) # append param print(len(model.params)) # 5 res = model(x) print(res.shape) # [5, 4] - 
            
           append
           (
           parameter
           )
           append¶
- 
           Appends a given parameter at the end of the list. - Parameters
- 
             parameter (Parameter) – parameter to append 
 
 
