shufflenet_v2_x2_0¶
- paddle.vision.models. shufflenet_v2_x2_0 ( pretrained=False, **kwargs ) [source]
- 
         ShuffleNetV2 with 2.0x output channels, as described in “ShuffleNet V2: Practical Guidelines for Ecient CNN Architecture Design”. - Parameters
- 
           - pretrained (bool, optional) – Whether to load pre-trained weights. If True, returns a model pre-trained on ImageNet. Default: False. 
- **kwargs (optional) – Additional keyword arguments. For details, please refer to ShuffleNetV2. 
 
- Returns
- 
           Layer. An instance of ShuffleNetV2 with 2.0x output channels. 
 Examples import paddle from paddle.vision.models import shufflenet_v2_x2_0 # build model model = shufflenet_v2_x2_0() # build model and load imagenet pretrained weight # model = shufflenet_v2_x2_0(pretrained=True) x = paddle.rand([1, 3, 224, 224]) out = model(x) print(out.shape) # [1, 1000] 
