LambdaDecay¶
- class paddle.fluid.dygraph.learning_rate_scheduler. LambdaDecay ( learning_rate, lr_lambda ) [source]
- 
         - Api_attr
- 
           imperative 
 Sets the learning rate of optimizerto the initial lr times a multiplicative factor, and this multiplicative factor is computed by functionlr_lambda.lr_lambdais funciton which receivesepoch.The algorithm can be described as the code below. learning_rate = 0.5 # init learning_rate lr_lambda = lambda epoch: 0.95 ** epoch learning_rate = 0.5 # epoch 0 learning_rate = 0.475 # epoch 1 learning_rate = 0.45125 # epoch 2 - Parameters
- 
           - learning_rate (float|int) – The initial learning rate. It can be set to python float or int number. 
- lr_lambda (function) – A function which computes a multiplicative factor given an integer parameter - epoch, and then multiply the initial learning rate by this multiplicative factor.
 
- Returns
- 
           None. 
 Examples import paddle.fluid as fluid import numpy as np with fluid.dygraph.guard(): x = np.random.uniform(-1, 1, [10, 10]).astype("float32") linear = fluid.dygraph.Linear(10, 10) input = fluid.dygraph.to_variable(x) scheduler = fluid.dygraph.LambdaDecay(0.5, lr_lambda=lambda x: 0.95**x) adam = fluid.optimizer.Adam(learning_rate = scheduler, parameter_list = linear.parameters()) for epoch in range(6): for batch_id in range(5): out = linear(input) loss = fluid.layers.reduce_mean(out) adam.minimize(loss) scheduler.epoch() print("epoch:%d, current lr is %f" .format(epoch, adam.current_step_lr())) # epoch:0, current lr is 0.5 # epoch:1, current lr is 0.475 # epoch:2, current lr is 0.45125 - 
            
           create_lr_var
           (
           lr
           )
           create_lr_var¶
- 
           convert lr from float to variable - Parameters
- 
             lr – learning rate 
- Returns
- 
             learning rate variable 
 
 - 
            
           epoch
           (
           epoch=None
           )
           epoch¶
- 
           compueted learning_rate and update it when invoked. 
 - 
            
           set_dict
           (
           state_dict
           )
           set_dict¶
- 
           Loads the schedulers state. 
 - 
            
           set_state_dict
           (
           state_dict
           )
           set_state_dict¶
- 
           Loads the schedulers state. 
 - 
            
           state_dict
           (
           )
           state_dict¶
- 
           Returns the state of the scheduler as a dict.It is a subset of self.__dict__ . 
 
