var¶
- paddle. var ( x, axis=None, unbiased=True, keepdim=False, name=None ) [source]
- 
         Computes the variance of xalongaxis.- Parameters
- 
           - x (Tensor) – The input Tensor with data type float32, float64. 
- axis (int|list|tuple, optional) – - The axis along which to perform variance calculations. - axisshould be int, list(int) or tuple(int).- If - axisis a list/tuple of dimension(s), variance is calculated along all element(s) of- axis.- axisor element(s) of- axisshould be in range [-D, D), where D is the dimensions of- x.
- If - axisor element(s) of- axisis less than 0, it works the same way as \(axis + D\) .
- If - axisis None, variance is calculated over all elements of- x. Default is None.
 
- unbiased (bool, optional) – Whether to use the unbiased estimation. If - unbiasedis True, the divisor used in the computation is \(N - 1\), where \(N\) represents the number of elements along- axis, otherwise the divisor is \(N\). Default is True.
- keep_dim (bool, optional) – Whether to reserve the reduced dimension in the output Tensor. The result tensor will have one fewer dimension than the input unless keep_dim is true. Default is False. 
- name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name. 
 
- Returns
- 
           Tensor, results of variance along axisofx, with the same data type asx.
 Examples import paddle x = paddle.to_tensor([[1.0, 2.0, 3.0], [1.0, 4.0, 5.0]]) out1 = paddle.var(x) # [2.66666667] out2 = paddle.var(x, axis=1) # [1. 4.33333333] 
