Accuracy¶
- class paddle.metric. Accuracy ( topk=(1,), name=None, *args, **kwargs ) [source]
- 
         Encapsulates accuracy metric logic. - Parameters
- 
           - topk (list[int]|tuple[int]) – Number of top elements to look at for computing accuracy. Default is (1,). 
- name (str, optional) – String name of the metric instance. Default is acc. 
 
 Example by standalone: import numpy as np import paddle x = paddle.to_tensor(np.array([ [0.1, 0.2, 0.3, 0.4], [0.1, 0.4, 0.3, 0.2], [0.1, 0.2, 0.4, 0.3], [0.1, 0.2, 0.3, 0.4]])) y = paddle.to_tensor(np.array([[0], [1], [2], [3]])) m = paddle.metric.Accuracy() correct = m.compute(x, y) m.update(correct) res = m.accumulate() print(res) # 0.75 Example with Model API: import paddle from paddle.static import InputSpec import paddle.vision.transforms as T from paddle.vision.datasets import MNIST input = InputSpec([None, 1, 28, 28], 'float32', 'image') label = InputSpec([None, 1], 'int64', 'label') transform = T.Compose([T.Transpose(), T.Normalize([127.5], [127.5])]) train_dataset = MNIST(mode='train', transform=transform) model = paddle.Model(paddle.vision.models.LeNet(), input, label) optim = paddle.optimizer.Adam( learning_rate=0.001, parameters=model.parameters()) model.prepare( optim, loss=paddle.nn.CrossEntropyLoss(), metrics=paddle.metric.Accuracy()) model.fit(train_dataset, batch_size=64) - 
            
           compute
           (
           pred, 
           label, 
           *args
           )
           compute¶
- 
           Compute the top-k (maximum value in topk) indices. - Parameters
- 
             - pred (Tensor) – The predicted value is a Tensor with dtype float32 or float64. Shape is [batch_size, d0, …, dN]. 
- label (Tensor) – The ground truth value is Tensor with dtype int64. Shape is [batch_size, d0, …, 1], or [batch_size, d0, …, num_classes] in one hot representation. 
 
- Returns
- 
             Correct mask, a tensor with shape [batch_size, d0, …, topk]. 
- Return type
- 
             Tensor 
 
 - 
            
           update
           (
           correct, 
           *args
           )
           update¶
- 
           Update the metrics states (correct count and total count), in order to calculate cumulative accuracy of all instances. This function also returns the accuracy of current step. - Parameters
- 
             correct – Correct mask, a tensor with shape [batch_size, d0, …, topk]. 
- Returns
- 
             the accuracy of current step. 
- Return type
- 
             Tensor 
 
 - 
            
           reset
           (
           )
           reset¶
- 
           Resets all of the metric state. 
 - 
            
           accumulate
           (
           )
           accumulate¶
- 
           Computes and returns the accumulated metric. 
 - 
            
           name
           (
           )
           name¶
- 
           Return name of metric instance. 
 
