L1Loss¶
- class paddle.nn. L1Loss ( reduction='mean', name=None ) [source]
- 
         Construct a callable object of the L1Lossclass. The L1Loss layer calculates the L1 Loss ofinputandlabelas follows.If reduction set to 'none', the loss is:\[Out = \lvert input - label\rvert\]If reduction set to 'mean', the loss is:\[Out = MEAN(\lvert input - label\rvert)\]If reduction set to 'sum', the loss is:\[Out = SUM(\lvert input - label\rvert)\]- Parameters
- 
           - reduction (str, optional) – Indicate the reduction to apply to the loss, the candicates are - 'none'|- 'mean'|- 'sum'. If reduction is- 'none', the unreduced loss is returned; If reduction is- 'mean', the reduced mean loss is returned. If reduction is- 'sum', the reduced sum loss is returned. Default is- 'mean'.
- name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name. 
 
 - Shape:
- 
           - input (Tensor): The input tensor. The shapes is - [N, *], where N is batch size and * means any number of additional dimensions. It’s data type should be float32, float64, int32, int64.
- label (Tensor): label. The shapes is - [N, *], same shape as- input. It’s data type should be float32, float64, int32, int64.
- output (Tensor): The L1 Loss of - inputand- label. If reduction is- 'none', the shape of output loss is- [N, *], the same as- input. If reduction is- 'mean'or- 'sum', the shape of output loss is [1].
 
 Examples import paddle input = paddle.to_tensor([[1.5, 0.8], [0.2, 1.3]]) label = paddle.to_tensor([[1.7, 1], [0.4, 0.5]]) l1_loss = paddle.nn.L1Loss() output = l1_loss(input, label) print(output.numpy()) # [0.35] l1_loss = paddle.nn.L1Loss(reduction='sum') output = l1_loss(input, label) print(output.numpy()) # [1.4] l1_loss = paddle.nn.L1Loss(reduction='none') output = l1_loss(input, label) print(output) # [[0.20000005 0.19999999] # [0.2 0.79999995]] - 
            
           forward
           (
           input, 
           label
           )
           forward¶
- 
           Defines the computation performed at every call. Should be overridden by all subclasses. - Parameters
- 
             - *inputs (tuple) – unpacked tuple arguments 
- **kwargs (dict) – unpacked dict arguments 
 
 
 
