scale¶
- paddle. scale ( x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None ) [source]
- 
         Scale operator. Putting scale and bias to the input Tensor as following: bias_after_scaleis True:\[Out=scale*X+bias\]bias_after_scaleis False:\[Out=scale*(X+bias)\]- Parameters
- 
           - x (Tensor) – Input N-D Tensor of scale operator. Data type can be float32, float64, int8, int16, int32, int64, uint8. 
- scale (float|Tensor) – The scale factor of the input, it should be a float number or a Tensor with shape [1] and data type as float32. 
- bias (float) – The bias to be put on the input. 
- bias_after_scale (bool) – Apply bias addition after or before scaling. It is useful for numeric stability in some circumstances. 
- act (str, optional) – Activation applied to the output such as tanh, softmax, sigmoid, relu. 
- name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name. 
 
- Returns
- 
           Output Tensor of scale operator, with shape and data type same as input. 
- Return type
- 
           Tensor 
 Examples # scale as a float32 number import paddle data = paddle.randn(shape=[2,3], dtype='float32') res = paddle.scale(data, scale=2.0, bias=1.0) # scale with parameter scale as a Tensor import paddle data = paddle.randn(shape=[2, 3], dtype='float32') factor = paddle.to_tensor([2], dtype='float32') res = paddle.scale(data, scale=factor, bias=1.0) 
