normalize¶
- paddle.nn.functional. normalize ( x, p=2, axis=1, epsilon=1e-12, name=None ) [source]
- 
         Normalize xalong dimensionaxisusing \(L_p\) norm. This layer computes\[y = \frac{x}{ \max\left( \lvert \lvert x \rvert \rvert_p, epsilon\right) }\]\[\lvert \lvert x \rvert \rvert_p = \left( \sum_i {\lvert x_i \rvert^p} \right)^{1/p}\]where, \(\sum_i{\lvert x_i \rvert^p}\) is calculated along the axisdimension.- Parameters
- 
           - x (Tensor) – The input tensor could be N-D tensor, and the input data type could be float32 or float64. 
- p (float|int, optional) – The exponent value in the norm formulation. Default: 2. 
- axis (int, optional) – The axis on which to apply normalization. If axis < 0, the dimension to normalization is x.ndim + axis. -1 is the last dimension. 
- epsilon (float, optional) – Small float added to denominator to avoid dividing by zero. Default is 1e-12. 
- name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name. 
 
- Returns
- 
           Tensor, the output has the same shape and data type with x.
 Examples import paddle import paddle.nn.functional as F paddle.disable_static() x = paddle.arange(6, dtype="float32").reshape([2,3]) y = F.normalize(x) print(y) # Tensor(shape=[2, 3], dtype=float32, place=Place(gpu:0), stop_gradient=True, # [[0. , 0.44721359, 0.89442718], # [0.42426404, 0.56568539, 0.70710671]]) y = F.normalize(x, p=1.5) print(y) # Tensor(shape=[2, 3], dtype=float32, place=Place(gpu:0), stop_gradient=True, # [[0. , 0.40862012, 0.81724024], # [0.35684016, 0.47578689, 0.59473360]]) y = F.normalize(x, axis=0) print(y) # Tensor(shape=[2, 3], dtype=float32, place=Place(gpu:0), stop_gradient=True, # [[0. , 0.24253564, 0.37139067], # [1. , 0.97014254, 0.92847669]]) 
