launch¶
- paddle.distributed. launch ( ) [source]
- 
         Paddle distribution training entry python -m paddle.distributed.launch.- Usage:
- 
           python -m paddle.distributed.launch [-h] [--master MASTER] [--rank RANK] [--log_level LOG_LEVEL] [--nnodes NNODES] [--nproc_per_node NPROC_PER_NODE] [--log_dir LOG_DIR] [--run_mode RUN_MODE] [--job_id JOB_ID] [--devices DEVICES] [--host HOST] [--servers SERVERS] [--trainers TRAINERS] [--trainer_num TRAINER_NUM] [--server_num SERVER_NUM] [--gloo_port GLOO_PORT] [--with_gloo WITH_GLOO] [--max_restart MAX_RESTART] [--elastic_level ELASTIC_LEVEL] [--elastic_timeout ELASTIC_TIMEOUT] training_script ... 
- Base Parameters:
- 
           - --master: The master/rendezvous server, support http:// and etcd://, default with http://. e.g.,- --master=127.0.0.1:8080. Default- --master=None.
- --rank: The rank of the node, can be auto assigned by master. Default- --rank=-1.
- --log_level: The log level to set for logging.setLevel which can be CRITICAL/ERROR/WARNING/INFO/DEBUG/NOTSET, case insensitive. Default- --log_level=INFO.
- --nnodes: The number of nodes for a distributed job, it can be a range in elastic mode, e.g.,- --nnodes=2:3. Default- --nnodes=1.
- --nproc_per_node: The number of processes to launch on a node. In gpu training, it should be less or equal to the gpus number of you system. e.g.,- --nproc_per_node=8
- --log_dir: The path for each process’s log. e.g.,- --log_dir=output_dir. Default- --log_dir=log.
- --run_mode: The run mode of job, can be:collective/ps/ps-heter. e.g.,- --run_mode=ps. Default- --run_mode=collective.
- --job_id: The job unique id, it affects the log files’ name. e.g.,- --job_id=job1. Default- --job_id=default.
- --devices: The selected accelerate devices on nodes, can be gpu/xpu/npu/mlu etc.. e.g.,- --devices=0,1,2,3will launch four training processes each bound to one device.
- training_script: The full path to the single GPU training program/script to be launched in parallel, followed by all the arguments for the training script. e.g.,- training.py
- training_script_args: The args of training_script. e.g.,- --lr=0.1
 
- Collective Parameters:
- 
           - --ips: [DEPRECATED] Paddle cluster nodes ips, e.g.,- --ips=192.168.0.16,192.168.0.17. Default- --ips=127.0.0.1.
 
- Parameter-Server Parameters:
- 
           - --servers: User defined servers ip:port, e.g.,- --servers="192.168.0.16:6170,192.168.0.17:6170"
- --trainers: User defined trainers ip:port, e.g.,- --trainers="192.168.0.16:6171,192.168.0.16:6172,192.168.0.17:6171,192.168.0.17:6172"
- --workers: [DEPRECATED] The same as trainers.
- --trainer_num: Number of trainers on each node, can be 0.
- --worker_num: [DEPRECATED] The same as trainer_num.
- --server_num: Number of servers on each node, can be 0.
- --heter_workers: User defined heter workers ip1:port1;ip2:port2, e.g.,- --heter_workers="192.168.0.16:6172;192.168.0.17:6172"
- --heter_worker_num: Number of heter_workers in each stage (It recommend to set when in the emulated distributed environment using single node)
- --heter_devices: Type of heter_device in each stage
- --gloo_port: Gloo http Port. Default- --gloo_port=6767.
- --with_gloo: Using gloo or not. Default- --with_gloo=0.
 
- Elastic Parameters:
- 
           - --max_restart: The maximum restart times for an elastic job. Default- --max_restart=3.
- --elastic_level: The elastic level: -1: disable, 0: failed exit, peers hold, 1: internal restart. Default- --elastic_level=-1.
- --elastic_timeout: Seconds to wait before elastic job begin to train. Default- --elastic_timeout=30.
 
- IPU Parameters:
- 
           IPU distributed launch only requires and allowes three arguments --devices,training_scriptandtraining_script_args. The--devicesis the number of IPU devices. e.g.,--devices=4will launch the training program with four IPU devices. Thetraining_scriptis only allowed to set asipu. Thetraining_script_argsincludes arguments required by IPU distributed launch and illustrated as below.Examples 10has provided a example of paddle.distributed.launch with IPUs.- --hosts: The hosts for IPU distributd training. Each host is able to include multiple processes.
- --nproc_per_host: The number of processes launched per host. Each process is able to include multiple replicas.
- --ipus_per_replica: The number of IPUs requested per replica. Each replica is able to include multiple IPUs.
- --ipu_partition: The partition name of IPU devices.
- --vipu_server: The ip of the IPU device manager.
- training_script: The full path to the IPU distributed training program/script to be launched in parallel. e.g.,- training.py.
- training_script_args: The args of the IPU distributed training program/script. e.g.,- --lr=0.1.
 
 - Returns
- 
           
           - None
 
 - Examples 0 (master, ip/port auto detection):
- 
           # For training on multi node, run the following command in one of the nodes python -m paddle.distributed.launch --nnodes 2 train.py # Then the following info will be print # Copy the following command to other nodes to run. # -------------------------------------------------------------------------------- # python -m paddle.distributed.launch --master 10.0.0.1:38714 --nnodes 2 train.py # -------------------------------------------------------------------------------- # Follow the instruction above and paste the command in other nodes can launch a multi nodes training job. # There are two ways to launch a job with the same command for multi nodes training # 1) using the following command in every nodes, make sure the ip is one of the training node and the port is available on that node # python -m paddle.distributed.launch --master 10.0.0.1:38714 --nnodes 2 train.py # 2) using the following command in every nodes with a independent etcd service # python -m paddle.distributed.launch --master etcd://10.0.0.1:2379 --nnodes 2 train.py # This functionality works will for both collective and ps mode and even with other arguments. 
- Examples 1 (collective, single node):
- 
           # For training on single node using 4 gpus. python -m paddle.distributed.launch --devices=0,1,2,3 train.py --lr=0.01 
- Examples 2 (collective, multi node):
- 
           # For training on multiple nodes, e.g., 192.168.0.16, 192.168.0.17 # On 192.168.0.16: python -m paddle.distributed.launch --devices=0,1,2,3 --master=192.168.0.16:8090 train.py --lr=0.01 # On 192.168.0.17: python -m paddle.distributed.launch --devices=0,1,2,3 --master=192.168.0.16:8090 train.py --lr=0.01 
- Examples 3 (ps, cpu, single node):
- 
           # To simulate distributed environment using single node, e.g., 2 servers and 4 workers. python -m paddle.distributed.launch --server_num=2 --worker_num=4 train.py --lr=0.01 
- Examples 4 (ps, cpu, multi node):
- 
           # For training on multiple nodes, e.g., 192.168.0.16, 192.168.0.17 where each node with 1 server and 2 workers. # On 192.168.0.16: python -m paddle.distributed.launch --servers="192.168.0.16:6170,192.168.0.17:6170" --workers="192.168.0.16:6171,192.168.0.16:6172,192.168.0.17:6171,192.168.0.17:6172" train.py --lr=0.01 # On 192.168.0.17: python -m paddle.distributed.launch --servers="192.168.0.16:6170,192.168.0.17:6170" --workers="192.168.0.16:6171,192.168.0.16:6172,192.168.0.17:6171,192.168.0.17:6172" train.py --lr=0.01 # Or with master, the following command run 2 server and 2 trainer on each node. python -m paddle.distributed.launch --master 192.168.0.16:9090 --server_num=2 --trainer_num=2 --nnodes 2 train.py 
- Examples 5 (ps, gpu, single node):
- 
           # To simulate distributed environment using single node, e.g., 2 servers and 4 workers, each worker use single gpu. export CUDA_VISIBLE_DEVICES=0,1,2,3 python -m paddle.distributed.launch --server_num=2 --worker_num=4 train.py --lr=0.01 
- Examples 6 (ps, gpu, multi node):
- 
           # For training on multiple nodes, e.g., 192.168.0.16, 192.168.0.17 where each node with 1 server and 2 workers. # On 192.168.0.16: export CUDA_VISIBLE_DEVICES=0,1 python -m paddle.distributed.launch --servers="192.168.0.16:6170,192.168.0.17:6170" --workers="192.168.0.16:6171,192.168.0.16:6172,192.168.0.17:6171,192.168.0.17:6172" train.py --lr=0.01 # On 192.168.0.17: export CUDA_VISIBLE_DEVICES=0,1 python -m paddle.distributed.launch --servers="192.168.0.16:6170,192.168.0.17:6170" --workers="192.168.0.16:6171,192.168.0.16:6172,192.168.0.17:6171,192.168.0.17:6172" train.py --lr=0.01 
- Examples 7 (ps-heter, cpu + gpu, single node):
- 
           # To simulate distributed environment using single node, e.g., 2 servers and 4 workers, two workers use gpu, two workers use cpu. export CUDA_VISIBLE_DEVICES=0,1 python -m paddle.distributed.launch --server_num=2 --worker_num=2 --heter_worker_num=2 train.py --lr=0.01 
- Examples 8 (ps-heter, cpu + gpu, multi node):
- 
           # For training on multiple nodes, e.g., 192.168.0.16, 192.168.0.17 where each node with 1 server, 1 gpu worker, 1 cpu worker. # On 192.168.0.16: export CUDA_VISIBLE_DEVICES=0 python -m paddle.distributed.launch --servers="192.168.0.16:6170,192.168.0.17:6170" --workers="192.168.0.16:6171,192.168.0.17:6171" --heter_workers="192.168.0.16:6172,192.168.0.17:6172" train.py --lr=0.01 # On 192.168.0.17: export CUDA_VISIBLE_DEVICES=0 python -m paddle.distributed.launch --servers="192.168.0.16:6170,192.168.0.17:6170" --workers="192.168.0.16:6171,192.168.0.17:6171" --heter_workers="192.168.0.16:6172,192.168.0.17:6172" train.py --lr=0.01 
- Examples 9 (elastic):
- 
           # With the following command, the job will begin to run immediately if 4 nodes are ready, # or it will run after elastic_timeout if only 2 or 3 nodes ready python -m paddle.distributed.launch --master etcd://10.0.0.1:2379 --nnodes 2:4 train.py # once the number of nodes changes between 2:4 during training, the strategy holds 
- Examples 10 (ipu):
- 
           # With the following command, the job will begin to run the distributhed program with IPUs # Require `devices` as the number of IPUs # Require `training_script` to be set as `ipu` # Require `training_script_args` as the arguments of IPU distributed training instead of the arguments of the training program/script # Please Check the `IPU Parameters` for details python -m paddle.distributed.launch --devices 4 ipu --hosts=localhost --nproc_per_host=2 --ipus_per_replica=1 --ipu_partition=pod16 --vipu_server=127.0.0.1 train.py 
 
