pad¶
- paddle.fluid.layers.nn. pad ( x, paddings, pad_value=0.0, name=None ) [source]
- 
         - Alias_main
- 
           paddle.nn.functional.pad :alias: paddle.nn.functional.pad,paddle.nn.functional.common.pad :old_api: paddle.fluid.layers.pad 
 This op will pad a tensor with a constant value given by pad_value, and the padded shape is specified bypaddings.Specifically, the number of values padded before the elements of xin dimensioniis indicated bypaddings[2*i], and the number of values padded after the elements ofxin dimensioniis indicated bypaddings[2*i+1].See below for an example. Given: x = [[1, 2], [3, 4]] paddings = [0, 1, 1, 2] pad_value = 0 Return: out = [[0, 1, 2, 0, 0] [0, 3, 4, 0, 0] [0, 0, 0, 0, 0]]- Parameters
- 
           - x (Variable) – Tensor, data type is float32. 
- paddings (list) – A list of integers. Its elements specify the padded width before and after each dimension in turn. The length of - paddingsmust be equal to \(rank(x) \\times 2\).
- pad_value (float) – The constant value used to pad. 
- name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name 
 
- Returns
- 
           The padded tensor, with the same data type and rank as x
 - Return Type:
- 
           Variable 
 Examples # x is a rank 2 tensor variable import paddle.fluid as fluid x = fluid.data(name='data', shape=[300, 300], dtype='float32') out = fluid.layers.pad(x=x, paddings=[0, 1, 1, 2], pad_value=0.) 
