sparse_coo_tensor¶
- paddle.sparse. sparse_coo_tensor ( indices, values, shape=None, dtype=None, place=None, stop_gradient=True ) [source]
- 
         Constructs a sparse paddle.Tensorin coordinate format according to the indices and values of the specified non-zero elements.- Parameters
- 
           - indices (list|tuple|ndarray|Tensor) – the indices of non-zero elements. Can be a list, tuple, numpy.ndarray, paddle.Tensor. The indices must be 2-D. 
- values (list|tuple|ndarray|Tensor) – Initial values for the tensor. Can be a scalar, list, tuple, numpy.ndarray, paddle.Tensor. 
- shape (list|tuple, optional) – The shape of the sparse tensor also represents the shape of original dense tensor. If not provided the smallest shape will be inferred to hold all elements. 
- dtype (str|np.dtype, optional) – The desired data type of returned tensor. Can be ‘bool’ , ‘float16’ , ‘float32’ , ‘float64’ , ‘int8’ , ‘int16’ , ‘int32’ , ‘int64’ , ‘uint8’, ‘complex64’ , ‘complex128’. Default: None, infers dtype from - dataexcept for python float number which gets dtype from- get_default_type.
- place (CPUPlace|CUDAPinnedPlace|CUDAPlace|str, optional) – The place to allocate Tensor. Can be CPUPlace, CUDAPinnedPlace, CUDAPlace. Default: None, means global place. If - placeis string, It can be- cpu,- gpu:xand- gpu_pinned, where- xis the index of the GPUs.
- stop_gradient (bool, optional) – Whether to block the gradient propagation of Autograd. Default: True. 
 
- Returns
- 
           A Tensor constructed from indicesandvalues.
- Return type
- 
           Tensor 
 Examples: import paddle indices = [[0, 1, 2], [1, 2, 0]] values = [1.0, 2.0, 3.0] dense_shape = [3, 3] coo = paddle.sparse.sparse_coo_tensor(indices, values, dense_shape) # print(coo) # Tensor(shape=[2, 3], dtype=paddle.float32, place=Place(gpu:0), stop_gradient=True, # indices=[[0, 1, 2], # [1, 2, 0]], # values=[1., 2., 3.]) 
