TransformedDistribution¶
- class paddle.distribution. TransformedDistribution ( base, transforms ) [source]
- 
         Applies a sequence of Transforms to a base distribution. - Parameters
- 
           - base (Distribution) – The base distribution. 
- transforms (Sequence[Transform]) – A sequence of - Transform.
 
 Examples import paddle from paddle.distribution import transformed_distribution d = transformed_distribution.TransformedDistribution( paddle.distribution.Normal(0., 1.), [paddle.distribution.AffineTransform(paddle.to_tensor(1.), paddle.to_tensor(2.))] ) print(d.sample([10])) # Tensor(shape=[10], dtype=float32, place=Place(gpu:0), stop_gradient=True, # [-0.10697651, 3.33609009, -0.86234951, 5.07457638, 0.75925219, # -4.17087793, 2.22579336, -0.93845034, 0.66054249, 1.50957513]) print(d.log_prob(paddle.to_tensor(0.5))) # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True, # [-1.64333570]) - 
            
           sample
           (
           shape=()
           )
           sample¶
- 
           Sample from TransformedDistribution.- Parameters
- 
             shape (tuple, optional) – The sample shape. Defaults to (). 
- Returns
- 
             The sample result. 
- Return type
- 
             [Tensor] 
 
 - 
            
           log_prob
           (
           value
           )
           log_prob¶
- 
           The log probability evaluated at value. - Parameters
- 
             value (Tensor) – The value to be evaluated. 
- Returns
- 
             The log probability. 
- Return type
- 
             Tensor 
 
 - property batch_shape
- 
           Returns batch shape of distribution - Returns
- 
             batch shape 
- Return type
- 
             Sequence[int] 
 
 - 
            
           entropy
           (
           )
           entropy¶
- 
           The entropy of the distribution. 
 - property event_shape
- 
           Returns event shape of distribution - Returns
- 
             event shape 
- Return type
- 
             Sequence[int] 
 
 - 
            
           kl_divergence
           (
           other
           )
           [source]
           kl_divergence¶
- 
           The KL-divergence between self distributions and other. 
 - property mean
- 
           Mean of distribution 
 - 
            
           prob
           (
           value
           )
           prob¶
- 
           Probability density/mass function evaluated at value. - Parameters
- 
             value (Tensor) – value which will be evaluated 
 
 - 
            
           probs
           (
           value
           )
           probs¶
- 
           Probability density/mass function. Note This method will be deprecated in the future, please use prob instead. 
 - 
            
           rsample
           (
           shape=()
           )
           rsample¶
- 
           reparameterized sample 
 - property variance
- 
           Variance of distribution 
 
