bilateral_slice¶
- paddle.fluid.contrib.layers.nn. bilateral_slice ( x, guide, grid, has_offset, name=None ) [source]
- 
         - Alias_main
- 
           paddle.nn.functional.bilateral_slice :alias: paddle.nn.functional.bilateral_slice,paddle.nn.functional.vision.bilateral_slice :old_api: paddle.fluid.layers.bilateral_slice 
 This operation implements bilateral slicing on the input according to the guide map. For more information of bilateral slicing, please refer to Deep Bilateral Learning for Real-Time Image Enhancement <https://groups.csail.mit.edu/graphics/hdrnet/data/hdrnet.pdf>_ - Parameters
- 
           - x (Variable) – The input tensor, which is a 4-D tensor with shape [N, C, H, W], N is the batch size, C is the channel number, H and W is the feature height and width. The data type is float32 and float64. 
- guide (Variable) – Input grid tensor of shape [N, H, W]. The data type is float32 and float64. 
- grid (Variable) – Input grid tensor of shape [N, C, D, H, W]. The data type is float32 and float64. 
- has_offset (bool) – Whether to slice with affine offset. 
- name (str, optional) – For detailed information, please refer to Name. Usually name is no need to set and None by default. 
 
- Returns
- 
           Output of shape [N, C, H, W]. The data type is same as input tensor. 
- Return type
- 
           Variable 
 Examples import paddle.fluid as fluid x = fluid.data(name='x', shape=[None, 3, 101, 60], dtype='float32') guide = fluid.data(name='guide', shape=[None, 101, 60], dtype='float32') grid = fluid.data(name='grid', shape=[None, 12, 8, 10, 6], dtype='float32') # without offset output = fluid.contrib.bilateral_slice(x, guide, grid, has_offset=False) # has offset output = fluid.contrib.bilateral_slice(x, guide, grid, has_offset=True) 
