serialize_persistables¶
- paddle.static. serialize_persistables ( feed_vars, fetch_vars, executor, **kwargs ) [source]
- 
         - Api_attr
- 
           Static Graph 
 Serialize parameters using given executor and default main program according to feed_vars and fetch_vars. - Parameters
- 
           - feed_vars (Variable | list[Variable]) – Variables needed by inference. 
- fetch_vars (Variable | list[Variable]) – Variables returned by inference. 
- kwargs – Supported keys including ‘program’.Attention please, kwargs is used for backward compatibility mainly. - program(Program): specify a program if you don’t want to use default main program. 
 
- Returns
- 
           serialized program. 
- Return type
- 
           bytes 
 Examples import paddle paddle.enable_static() path_prefix = "./infer_model" # User defined network, here a softmax regession example image = paddle.static.data(name='img', shape=[None, 28, 28], dtype='float32') label = paddle.static.data(name='label', shape=[None, 1], dtype='int64') predict = paddle.static.nn.fc(image, 10, activation='softmax') loss = paddle.nn.functional.cross_entropy(predict, label) exe = paddle.static.Executor(paddle.CPUPlace()) exe.run(paddle.static.default_startup_program()) # serialize parameters to bytes. serialized_params = paddle.static.serialize_persistables([image], [predict], exe) # deserialize bytes to parameters. main_program = paddle.static.default_main_program() deserialized_params = paddle.static.deserialize_persistables(main_program, serialized_params, exe) 
