Categorical¶
- class paddle.fluid.layers.distributions. Categorical ( logits ) [source]
- 
         Categorical distribution is a discrete probability distribution that describes the possible results of a random variable that can take on one of K possible categories, with the probability of each category separately specified. The probability mass function (pmf) is: \[pmf(k; p_i) = \prod_{i=1}^{k} p_i^{[x=i]}\]In the above equation: - \([x=i]\) : it evaluates to 1 if \(x==i\) , 0 otherwise. 
 - Parameters
- 
           logits (list|numpy.ndarray|Variable) – The logits input of categorical distribution. The data type is float32. 
 Examples import numpy as np from paddle.fluid import layers from paddle.fluid.layers import Categorical a_logits_npdata = np.array([-0.602,-0.602], dtype="float32") a_logits_tensor = layers.create_tensor(dtype="float32") layers.assign(a_logits_npdata, a_logits_tensor) b_logits_npdata = np.array([-0.102,-0.112], dtype="float32") b_logits_tensor = layers.create_tensor(dtype="float32") layers.assign(b_logits_npdata, b_logits_tensor) a = Categorical(a_logits_tensor) b = Categorical(b_logits_tensor) a.entropy() # [0.6931472] with shape: [1] b.entropy() # [0.6931347] with shape: [1] a.kl_divergence(b) # [1.2516975e-05] with shape: [1] - 
            
           kl_divergence
           (
           other
           )
           kl_divergence¶
- 
           The KL-divergence between two Categorical distributions. - Parameters
- 
             other (Categorical) – instance of Categorical. The data type is float32. 
- Returns
- 
             kl-divergence between two Categorical distributions. 
- Return type
- 
             Variable 
 
 - 
            
           entropy
           (
           )
           entropy¶
- 
           Shannon entropy in nats. - Returns
- 
             Shannon entropy of Categorical distribution. The data type is float32. 
- Return type
- 
             Variable 
 
 - 
            
           log_prob
           (
           value
           )
           log_prob¶
- 
           Log probability density/mass function. 
 - 
            
           sample
           (
           )
           sample¶
- 
           Sampling from the distribution. 
 
