resize_linear¶
- paddle.fluid.layers.nn. resize_linear ( input, out_shape=None, scale=None, name=None, actual_shape=None, align_corners=True, align_mode=1, data_format='NCW' ) [source]
- 
         This op resizes the input by performing linear interpolation based on given output shape which specified by actual_shape, out_shape and scale in priority order. Warning: the parameter actual_shapewill be deprecated in the future and only useout_shapeinstead.Align_corners and align_mode are optional parameters,the calculation method of interpolation can be selected by them. Example: For scale: if align_corners = True && out_size > 1 : scale_factor = (in_size-1.0)/(out_size-1.0) else: scale_factor = float(in_size/out_size) Linear interpolation: if: align_corners = False , align_mode = 0 input : (N,C,W_in) output: (N,C,W_out) where: W_out = (W_{in}+0.5) * scale_{factor} - 0.5 else: input : (N,C,W_in) output: (N,C,W_out) where: W_out = W_{in} * scale_{factor}- Parameters
- 
           - input (Variable) – 3-D Tensor(NCW), its data type is float32, float64, or uint8, its data format is specified by - data_format.
- out_shape (list|tuple|Variable|None) – Output shape of resize linear layer, the shape is (out_w,). Default: None. If a list, each element can be an integer or a Tensor Variable with shape: [1]. If a Tensor Variable, its dimension size should be 1. 
- scale (float|Variable|None) – The multiplier for the input height or width. At least one of - out_shapeor- scalemust be set. And- out_shapehas a higher priority than- scale. Default: None.
- actual_shape (Variable) – An optional input to specify output shape dynamically. If provided, image resize according to this given shape rather than - out_shapeand- scalespecifying shape. That is to say actual_shape has the highest priority. It is recommended to use- out_shapeif you want to specify output shape dynamically, because- actual_shapewill be deprecated. When using actual_shape to specify output shape, one of- out_shapeand- scaleshould also be set, otherwise errors would be occurred in graph constructing stage. Default: None
- align_corners (bool) – an optional bool. Defaults to True. If True, the centers of 4 corner pixels of the input and output tensors are aligned, preserving the values at the corner pixels, If False, are not aligned 
- align_mode (bool) – (int, default ‘1’), optional for bilinear interpolation, can be ‘0’ for src_idx = scale*(dst_indx+0.5)-0.5 , can be ‘1’ for src_idx = scale*dst_index 
- data_format (str, optional) – Specify the data format of the input, and the data format of the output will be consistent with that of the input. An optional string from: “NCW”, “NWC”. The default is “NCW”. When it is “NCW”, the data is stored in the order of: [batch_size, input_channels, input_width]. 
- name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name 
 
- Returns
- 
           3-D tensor(NCW or NWC). 
- Return type
- 
           Variable 
 Examples #declarative mode import paddle.fluid as fluid import numpy as np input = fluid.data(name="input", shape=[None,3,100]) output = fluid.layers.resize_linear(input=input,out_shape=[50,]) place = fluid.CPUPlace() exe = fluid.Executor(place) exe.run(fluid.default_startup_program()) input_data = np.random.rand(1,3,100).astype("float32") output_data = exe.run(fluid.default_main_program(), feed={"input":input_data}, fetch_list=[output], return_numpy=True) print(output_data[0].shape) # (1, 3, 50) #imperative mode import paddle.fluid.dygraph as dg with dg.guard(place) as g: input = dg.to_variable(input_data) output = fluid.layers.resize_linear(input=input, out_shape=[50,]) print(output.shape) # [1L, 3L, 50L] 
