sparse_csr_tensor¶
- paddle.sparse. sparse_csr_tensor ( crows, cols, values, shape, dtype=None, place=None, stop_gradient=True ) [source]
- 
         Constructs a sparse paddle.Tensorin CSR(Compressed Sparse Row) format according to thecrows,colsandvalues. Currently, the crows and cols of each batch must be incrementd.- Parameters
- 
           - crows (list|tuple|ndarray|Tensor) – 1-D array, each element in the rows represents the starting position of the first non-zero element of each row in values. Can be a list, tuple, numpy.ndarray, paddle.Tensor. 
- cols (list|tuple|ndarray|Tensor) – 1-D array, the column of non-zero elements. Can be a list, tuple, numpy.ndarray, paddle.Tensor. 
- values (list|tuple|ndarray|Tensor) – 1-D array, the non-zero elements. Can be a scalar, list, tuple, numpy.ndarray, paddle.Tensor. 
- shape (list|tuple, optional) – The shape of the sparse tensor also represents the shape of original dense tensor. hold all elements. 
- dtype (str|np.dtype, optional) – The desired data type of returned tensor. Can be ‘bool’ , ‘float16’ , ‘float32’ , ‘float64’ , ‘int8’ , ‘int16’ , ‘int32’ , ‘int64’ , ‘uint8’, ‘complex64’ , ‘complex128’. Default: None, infers dtype from - dataexcept for python float number which gets dtype from- get_default_type.
- place (CPUPlace|CUDAPinnedPlace|CUDAPlace|str, optional) – The place to allocate Tensor. Can be CPUPlace, CUDAPinnedPlace, CUDAPlace. Default: None, means global place. If - placeis string, It can be- cpu,- gpu:xand- gpu_pinned, where- xis the index of the GPUs.
- stop_gradient (bool, optional) – Whether to block the gradient propagation of Autograd. Default: True. 
 
- Returns
- 
           A Tensor constructed from crows,colsandvalues.
- Return type
- 
           Tensor 
 Examples: import paddle crows = [0, 2, 3, 5] cols = [1, 3, 2, 0, 1] values = [1, 2, 3, 4, 5] dense_shape = [3, 4] csr = paddle.sparse.sparse_csr_tensor(crows, cols, values, dense_shape) # print(csr) # Tensor(shape=[3, 4], dtype=paddle.int64, place=Place(gpu:0), stop_gradient=True, # crows=[0, 2, 3, 5], # cols=[1, 3, 2, 0, 1], # values=[1, 2, 3, 4, 5]) 
