MNIST¶
- class paddle.vision.datasets. MNIST ( image_path=None, label_path=None, mode='train', transform=None, download=True, backend=None ) [source]
- 
         Implementation of MNIST dataset. - Parameters
- 
           - image_path (str, optional) – Path to image file, can be set None if - downloadis True. Default: None, default data path: ~/.cache/paddle/dataset/mnist.
- label_path (str, optional) – Path to label file, can be set None if - downloadis True. Default: None, default data path: ~/.cache/paddle/dataset/mnist.
- mode (str, optional) – Either train or test mode. Default ‘train’. 
- transform (Callable, optional) – Transform to perform on image, None for no transform. Default: None. 
- download (bool, optional) – Download dataset automatically if - image_path- label_pathis not set. Default: True.
- backend (str, optional) – Specifies which type of image to be returned: PIL.Image or numpy.ndarray. Should be one of {‘pil’, ‘cv2’}. If this option is not set, will get backend from paddle.vision.get_image_backend, default backend is ‘pil’. Default: None. 
 
- Returns
- 
           Dataset. An instance of MNIST dataset. 
 Examples import itertools import paddle.vision.transforms as T from paddle.vision.datasets import MNIST mnist = MNIST() print(len(mnist)) # 60000 for i in range(5): # only show first 5 images img, label = mnist[i] # do something with img and label print(type(img), img.size, label) # <class 'PIL.Image.Image'> (28, 28) [5] transform = T.Compose( [ T.ToTensor(), T.Normalize( mean=[127.5], std=[127.5], ), ] ) mnist_test = MNIST( mode="test", transform=transform, # apply transform to every image backend="cv2", # use OpenCV as image transform backend ) print(len(mnist_test)) # 10000 for img, label in itertools.islice(iter(mnist_test), 5): # only show first 5 images # do something with img and label print(type(img), img.shape, label) # <class 'paddle.Tensor'> [1, 28, 28] [7] 
