PReLU¶
- class paddle.nn. PReLU ( num_parameters=1, init=0.25, weight_attr=None, data_format='NCHW', name=None ) [source]
- 
         PReLU Activation. \[PReLU(x) = max(0, x) + weight * min(0, x)\]- Parameters
- 
           - num_parameters (int, optional) – Number of weight to learn. The supported values are: 1 - a single parameter alpha is used for all input channels; Number of channels - a separate alpha is used for each input channel. Default is 1. 
- init (float, optional) – Init value of learnable weight. Default is 0.25. 
- weight_attr (ParamAttr, optional) – The parameter attribute for the learnable weight. Default is None. For more information, please refer to ParamAttr. 
- name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name. 
- data_format (str, optional) – Data format that specifies the layout of input. It may be “NC”, “NCL”, “NCHW”, “NCDHW”, “NLC”, “NHWC” or “NDHWC”. Default: “NCHW”. 
 
 - Shape:
- 
           - input: Tensor with any shape. Default dtype is float32. 
- output: Tensor with the same shape as input. 
 
 Examples import paddle paddle.set_default_dtype("float64") data = paddle.to_tensor([[[[-2.0, 3.0, -4.0, 5.0], [ 3.0, -4.0, 5.0, -6.0], [-7.0, -8.0, 8.0, 9.0]], [[ 1.0, -2.0, -3.0, 4.0], [-5.0, 6.0, 7.0, -8.0], [ 6.0, 7.0, 8.0, 9.0]]]]) m = paddle.nn.PReLU(1, 0.25) out = m(data) print(out) # [[[[-0.5 , 3. , -1. , 5. ], # [ 3. , -1. , 5. , -1.5 ], # [-1.75, -2. , 8. , 9. ]], # [[ 1. , -0.5 , -0.75, 4. ], # [-1.25, 6. , 7. , -2. ], # [ 6. , 7. , 8. , 9. ]]]] - 
            
           forward
           (
           x
           )
           forward¶
- 
           Defines the computation performed at every call. Should be overridden by all subclasses. - Parameters
- 
             - *inputs (tuple) – unpacked tuple arguments 
- **kwargs (dict) – unpacked dict arguments 
 
 
 - 
            
           extra_repr
           (
           )
           extra_repr¶
- 
           Extra representation of this layer, you can have custom implementation of your own layer. 
 
