InverseTimeDecay¶
- class paddle.fluid.dygraph.learning_rate_scheduler. InverseTimeDecay ( learning_rate, decay_steps, decay_rate, staircase=False, begin=0, step=1, dtype='float32' ) [source]
- 
         - Api_attr
- 
           imperative 
 Applies inverse time decay to the initial learning rate. The algorithm can be described as following. If staircase is set to False, then: \[\begin{split}decayed\_learning\_rate = \\frac{learning\_rate}{1 + decay\_rate * \\frac{global\_step}{decay\_step}}\end{split}\]If staircase is set to True, then: \[\begin{split}decayed\_learning\_rate = \\frac{learning\_rate}{1 + decay\_rate * math.floor(\\frac{global\_step}{decay\_step})}\end{split}\]- Parameters
- 
           - learning_rate (Variable|float) – The initial learning rate. If the type is Variable, it’s a tensor with shape [1], the data type can be float32 or float64. It also can be set to python int number. 
- decay_steps (int) – The decay step size. It determines the decay cycle. 
- decay_rate (float) – The decay rate. 
- staircase (bool, optional) – If set to True, decay the learning rate at discrete intervals. The default value is False. 
- begin (int, optional) – The begin step. The initial value of global_step described above. The default value is 0. 
- step (int, optional) – The step size used to calculate the new global_step in the description above. The default value is 1. 
- dtype (str, optional) – The data type used to create the learning rate variable. The data type can be ‘float32’, ‘float64’. The default value is ‘float32’. 
 
- Returns
- 
           None. 
 Examples import paddle.fluid as fluid base_lr = 0.1 with fluid.dygraph.guard(): emb = fluid.dygraph.Embedding([10, 10]) sgd_optimizer = fluid.optimizer.SGD( learning_rate=fluid.dygraph.InverseTimeDecay( learning_rate=base_lr, decay_steps=10000, decay_rate=0.5, staircase=True), parameter_list = emb.parameters()) - 
            
           create_lr_var
           (
           lr
           )
           create_lr_var¶
- 
           convert lr from float to variable - Parameters
- 
             lr – learning rate 
- Returns
- 
             learning rate variable 
 
 - 
            
           set_dict
           (
           state_dict
           )
           set_dict¶
- 
           Loads the schedulers state. 
 - 
            
           set_state_dict
           (
           state_dict
           )
           set_state_dict¶
- 
           Loads the schedulers state. 
 - 
            
           state_dict
           (
           )
           state_dict¶
- 
           Returns the state of the scheduler as a dict.It is a subset of self.__dict__ . 
 
