Pad3D¶
- class paddle.nn. Pad3D ( padding, mode='constant', value=0.0, data_format='NCDHW', name=None ) [source]
- 
         This interface is used to construct a callable object of the Pad3Dclass. Pad tensor according to ‘pad’, ‘mode’ and ‘value’. If mode is ‘reflect’, pad[0] and pad[1] must be no greater than width-1. The height and depth dimension has the same condition.- Parameters
- 
           - padding (Tensor|list[int]|int) – The padding size with data type int. If is int, use the same padding in all dimensions. Else [len(padding)/2] dimensions of input will be padded. The pad has the form (pad_left, pad_right, pad_top, pad_bottom, pad_front, pad_back). 
- mode (str, optional) – - Four modes: ‘constant’ (default), ‘reflect’, ‘replicate’, ‘circular’. Default is ‘constant’. - ’constant’ mode, uses a constant value to pad the input tensor. 
- ’reflect’ mode, uses reflection of the input boundaries to pad the input tensor. 
- ’replicate’ mode, uses input boundaries to pad the input tensor. 
- ’circular’ mode, uses circular input to pad the input tensor. 
 
- value (float, optional) – The value to fill the padded areas. Default is \(0.0\)。 
- data_format (str, optional) – An string from: “NCDHW”, “NDHWC”. Specify the data format of the input data. Default is “NCDHW”。 
- name (str, optional) – For details, please refer to Name. Generally, no setting is required. Default: None. 
 
- Returns
- 
           None 
 Examples import paddle import paddle.nn as nn input_shape = (1, 1, 1, 2, 3) pad = [1, 0, 1, 2, 0, 0] mode = "constant" data = paddle.arange(paddle.prod(paddle.to_tensor(input_shape)), dtype="float32").reshape(input_shape) + 1 my_pad = nn.Pad3D(padding=pad, mode=mode) result = my_pad(data) print(result) # [[[[[0. 0. 0. 0.] # [0. 1. 2. 3.] # [0. 4. 5. 6.] # [0. 0. 0. 0.] # [0. 0. 0. 0.]]]]] - 
            
           forward
           (
           x
           )
           forward¶
- 
           Defines the computation performed at every call. Should be overridden by all subclasses. - Parameters
- 
             - *inputs (tuple) – unpacked tuple arguments 
- **kwargs (dict) – unpacked dict arguments 
 
 
 - 
            
           extra_repr
           (
           )
           extra_repr¶
- 
           Extra representation of this layer, you can have custom implementation of your own layer. 
 
