rfft2¶
- paddle.fft. rfft2 ( x, s=None, axes=(- 2, - 1), norm='backward', name=None ) [source]
- 
         The two dimensional FFT with real tensor input. This is really just rfftn with different default behavior. For more details see rfftn. - Parameters
- 
           - x (Tensor) – Input tensor, taken to be real. 
- s (Sequence[int], optional) – Shape of the FFT. 
- axes (Sequence[int], optional) – Axes over which to compute the FFT. 
- norm (str, optional) – - {“backward”, “ortho”, “forward”}, default is “backward”. Indicates which direction of the forward/backward pair of transforms is scaled and with what normalization factor. The details of three operations are shown below: - ”backward”: The factor of forward direction and backward direction are - 1and- 1/nrespectively;
- ”forward”: The factor of forward direction and backward direction are - 1/nand- 1respectively;
- ”ortho”: The factor of forward direction and backword direction are both - 1/sqrt(n).
 - Where - nis the multiplication of each element in- s.
- name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name . 
 
- Returns
- 
           The result of the real 2-D FFT. 
- Return type
- 
           out(Tensor) 
 Examples: import paddle import numpy as np x = paddle.to_tensor(np.mgrid[:5, :5][0].astype(np.float32)) print(paddle.fft.rfft2(x)) # Tensor(shape=[5, 3], dtype=complex64, place=CUDAPlace(0), stop_gradient=True, # [[ (50+0j) , (1.1920928955078125e-07+0j) , 0j ], # [(-12.5+17.204774856567383j) , (-9.644234211236835e-08+7.006946134424652e-08j) , 0j ], # [(-12.500000953674316+4.061495304107666j) , (3.6837697336977726e-08-1.1337477445749755e-07j), 0j ], # [(-12.500000953674316-4.061495304107666j) , (3.6837697336977726e-08+1.1337477445749755e-07j), 0j ], # [(-12.5-17.204774856567383j) , (-9.644234211236835e-08-7.006946134424652e-08j) , 0j ]]) 
