angle
逐元素计算复数的相位角。对于非负实数,相位角为 0,而对于负实数,相位角为 \(\pi\)。
\[angle(x) = arctan2(x.imag, x.real)\]
参数
x (Tensor) - 输入的 Tensor,数据类型为:complex64, complex128 或 float32, float64。别名
input。name (str,可选) - 具体用法请参见 api_guide_Name,一般无需设置,默认值为 None。
关键字参数
out (Tensor,可选) - 输出 Tensor,若不为
None,计算结果将保存在该 Tensor 中,默认值为None。
返回
输出实数 Tensor,与 x 的数值精度一致。
代码示例
>>> import paddle
>>> x = paddle.to_tensor([-2, -1, 0, 1]).unsqueeze(-1).astype('float32')
>>> y = paddle.to_tensor([-2, -1, 0, 1]).astype('float32')
>>> z = x + 1j * y
>>> z
Tensor(shape=[4, 4], dtype=complex64, place=Place(cpu), stop_gradient=True,
[[(-2.00000000-2.00000000j), (-2.00000000-1.00000000j),
(-2.00000000+0.00000000j), (-2.00000000+1.00000000j)],
[(-1.00000000-2.00000000j), (-1.00000000-1.00000000j),
(-1.00000000+0.00000000j), (-1.00000000+1.00000000j)],
[(0.00000000-2.00000000j) , (0.00000000-1.00000000j) ,
(0.00000000+0.00000000j), (0.00000000+1.00000000j)],
[ (1.00000000-2.00000000j), (1.00000000-1.00000000j),
(1.00000000+0.00000000j), (1.00000000+1.00000000j)]])
>>> theta = paddle.angle(z)
>>> theta
Tensor(shape=[4, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
[[-2.35619450, -2.67794514, 3.14159274, 2.67794514],
[-2.03444386, -2.35619450, 3.14159274, 2.35619450],
[-1.57079637, -1.57079637, 0. , 1.57079637],
[-1.10714877, -0.78539819, 0. , 0.78539819]])